

 EPC-enabled RFID Serialization
Management for SGTIN-96

GS1 US Guideline

 All contents copyright © GS1 US 2012 Page 2 of 23

Document Summary

Document Item Current Value

Document Title EPC-enabled RFID Serialization Management for SGTIN-96 GS1 US
Guideline

Date Last Modified 9 May 2012

Current Document Issue Issue #1

Status Final

Document Description

Contributors
Name Organization

Gena Morgan (Group Facilitator) GS1 US

Ken Traub (Editor) Ken Traub Consulting LLC, for GS1 US

Joseph Andraski VICS Staff

Paul Arguin VICS Affiliates

Larry Arnstein Impinj, Inc.

Susan Bailey Hanes Brands

Kris Barton Avery Dennison Corporation

Ray Blanchard Avery Dennison Corporation

Daniel Bowman Impinj, Inc.

Patricia Buccheri GS1 US

Myron Burke Wal-Mart Stores Inc

Phil Calderbank SML

Michele Cervone Maidenform

Kenmann Chiu r-pac International Corp.

Thomas Considine SML

Joe Demers Zebra Technologies

Brian Derda Macy's

Andy Edwards Printronix Inc.

Patrick Ervin Alien Technology

Michael Fein Zebra Technologies

Harley Feldman Seeonic, Inc.

David Feldman Zebra Technologies

Jo Ann Fiordland VICS Staff

 All contents copyright © GS1 US 2012 Page 3 of 23

Name Organization

Susan Flake Motorola

David Gardiner VF Corporation

Doug Harvel Jockey International, Inc.

Sue Hutchinson GS1 US

David Isley VF Corporation

Patrick Javick GS1 US

Raj Jayaraman Checkpoint Systems, Inc.

Steven Karrmann JCPenney Company Inc

Peter Kim Target Corporation

Mike Kuhno Avery Dennison Corporation

Sri Ramya Kukunuri Perry Ellis

John Mesa Perry Ellis

Valerie Mitchko GS1 US

Jim Musco Macy's

Chris Nagy Phillips-Van Heusen Corporation

Suresh Palliparambil NXP Semiconductors

Fernando Perez Perry Ellis

Dale Phillips Hanes Brands

Sarah Polworth Saks

Bebe Purcell VF Corporation

Sheldon Reich Cybra Corporation

Erin Saxton Times Three Clothier, LLC

Paul Schmidt Kohl's Department Stores Inc.

Michael Shabet Cybra Corporation

Andrea Smith Lord & Taylor

Kelly Snead UPM RFID

Michele Southall GS1 US

Loreta Stamo Perry Ellis

James Stigall UPM Raflatac

Pam Sweeney Macy's

Michael Teitelbaum r-pac International Corp.

William Toney Avery Dennison Corporation

Ramon Valle Perry Ellis

Victor Vega NXP Semiconductors

Ismael Vicens Wacoal America, Inc

Steve Voit Impinj, Inc.

Gale Weisenfeld Phillips-Van Heusen Corporation

 All contents copyright © GS1 US 2012 Page 4 of 23

Name Organization

Kris Whitney Macy's

McLeod Williamson Zebra Technologies

Log of Changes in Issue #1
Issue No. Date of Change Changed By Summary of Change

1 9 May 2012 GS1 US Document created

Disclaimer
Whilst every effort has been made to ensure that the contents of this document are correct, GS1US and any
other party involved in the creation of the document HEREBY STATE that the document is provided without
warranty, either expressed or implied, of accuracy or fitness for purpose, AND HEREBY DISCLAIM any liability,
direct or indirect, for damages or loss relating to the use of the document. The document may be modified,
subject to developments in technology, changes to the standards, or new legal requirements. Several products
and company names mentioned herein may be trademarks and/or registered trademarks of their respective
companies.

 All contents copyright © GS1 US 2012 Page 5 of 23

Table of Contents
1. Background ... 6
2. Scope .. 7
3. Business Scenarios... 8

3.1. Brand Owner Manufacturing on a Single Line .. 8
3.2. Brand Owner Manufacturing on Multiple Lines .. 8
3.3. Brand Owner Uses Service Bureaus, Contract Manufacturers, or Other 3rd parties 9
3.4. Downstream (Distributor or Retailer) Exception Tagging ... 9

4. Approaches to Managing Serialization ... 10
4.1. IT-Based Serialization .. 10

4.1.1. Sequential Serialization on a Single Line ... 10
4.1.2. Static Allocation of Serial Number Ranges to Multiple Lines ... 11
4.1.3. Dynamic Allocation of Serial Number Ranges to Multiple Lines .. 14

4.2. Chip Based Serialization (TID) ... 15
4.2.1. About the TID ... 15
4.2.2. Using the TID to Serialize Products ... 16
4.2.3. Chip-based Serialization on Multiple Manufacturing Lines .. 18
4.2.4. Considerations for Using Chip-based Serialization .. 18

4.3. Creating a Top-level Serialization Plan .. 19
4.4. Supporting Downstream Exception Serialization ... 21

 All contents copyright © GS1 US 2012 Page 6 of 23

1. Background
This guideline describes options and methods for assigning globally unique identification to individual
instances of trade items, using a Global Trade Item Number (GTIN) plus a unique serial number. This
combination is commonly referred to as a Serialized Global Trade Item Number, or SGTIN. Assigning
a unique SGTIN to every instance of a trade item means that two otherwise identical units of the same
product have distinct SGTINs. A product instance identified by an SGTIN is said to be serialized, and
the process of assigning a unique SGTIN to a product and affixing a tag bearing that SGTIN in
machine-readable form is called serialization.

Serialization makes it possible to trace individual products as they move through the supply chain. It
also makes it possible to use Radio-Frequency Identification (RFID) to identify products – because
RFID technology allows multiple tags to be read at once (unlike bar codes), distinct SGTINs are
needed so that hardware and software can distinguish between reading two different tags versus
reading the same tag twice. This guideline focuses especially on serialization when 96-bit RFID tags
are to be used.

GS1 standards state the following:

■ A product class is uniquely identified by a GTIN, whose structure is specified in the GS1
General Specifications. The GTIN is commonly encoded into a U.P.C. or EAN-13 bar code
that is used at point of sale to determine what product is being purchased.

■ A specific instance of a product class is uniquely identified by the combination of its GTIN and
a serial number that is assigned uniquely to each instance. The serial number is unique
within each GTIN; that is, it is acceptable to have a serial number 100 of Product A and a
serial number 100 of Product B, but there cannot be two distinct instances of Product A that
both have serial number 100. This is a critical to the success of tracing items at an instance
level and when using RFID.

■ GS1 standards define how the combination of GTIN + serial number may be encoded into bar
code symbols, including 1-D bar codes (GS1-128, DataBar) and 2-D bar codes (GS1 Data
Matrix, GS1 QR Code). See the GS1 General Specifications.

■ GS1 standards also define how the combination of GTIN + serial number may be encoded into
HF and UHF Gen 2 RFID tags. See the GS1 EPC Tag Data Standard. Certain RFID tags
impose limitations on the value of the serial number, as noted below.

■ GS1 standards specify that it is the responsibility of the product brand owner to assign a
globally unique GTIN to each distinct product class, and to assign unique serial numbers to
each product instance when product instances are to be serialized. The brand owner may
delegate serialization to other parties, but it is still the brand owner’s responsibility to
ensure that serial numbers are assigned uniquely within each GTIN. See the GS1
General Specifications.

The purpose of this guideline is to supplement the GS1 Standards by saying how brand owners can
manage the assignment of unique serial numbers to their products. In particular, this guideline offers
several strategies that can be used when brand owners have to delegate the assignment of serial
numbers to multiple parties, either internal divisions or manufacturing plants or external parties such
as contract manufacturers and service bureaus.

The GS1 Standards specify that a serial number is an alphanumeric string of between 1–20
characters, drawn from a character set that includes digits, upper- and lowercase letters, and a variety
of punctuation. However, 96-bit RFID tags (the most commonly available type, at present) do not
have sufficient storage capacity to hold a GTIN plus a 20-character alphanumeric serial number.
Therefore, when 96-bit RFID tags are used, serial numbers are restricted to be all numeric (i.e., the
only characters permitted are the digits 0 through 9), and between 1-12 digits in length. (More
precisely, the serial number must be all numeric, the first digit must not be a “0”, and the value when

 All contents copyright © GS1 US 2012 Page 7 of 23

read as a decimal numeral must be less than or equal to 274877906943. Not all 12-digit numerals fit
within this restriction.)

In this guideline, we focus on brand owners who intend to use 96-bit RFID tags as the primary data
carrier for affixing the SGTIN to serialized products. We also focus on the serialization at the item
level, though the principles discussed here would apply equally well at the case level or higher. We
focus on business practices that are common in the apparel industry. While the principles of
serialization apply equally to all industries, different industries may confront a different range of
business issues. For example, in pharmaceuticals the serialization of product is never delegated to a
third party as it is in apparel; conversely, in pharmaceuticals there are sometimes requirements for
randomization of serial numbers which do not occur in apparel and are not discussed here.

The last section of this document discusses certain challenges of serialization that are not easily
overcome given the current standards. That section discusses how future standards might provide
new solutions that are not otherwise discussed in this document.

2. Scope
This guideline supplements GS1 Standards by offering several strategies for managing the
assignment of unique serial numbers to their product in a standards-compliant way. This guideline is
primarily aimed at brand owners operating within the following scope:

■ Products in the apparel and fashion industry

■ Products that already carry a GTIN (including U.P.C. or EAN-13) to identify the product class

■ Products that are to be serialized at the item level

■ Products that are to carry a 96-bit EPC RFID tag containing the GTIN plus a unique serial
number

■ Products that are mainly intended to be serialized “at source”; i.e., by the brand owner itself or
a manufacturing or labelling partner of the brand owner, such that the product is serialized
prior to delivery by the brand owner to its customer. There may be some limited need to
assign serial numbers further downstream in the supply chain; e.g., in an exception situation
where the source tag is missing.

The motivation for serializing the product is assumed to be one or more of the following:

■ RFID tags are to be used for managing inventory. When RFID tags are used, each product
must have a unique SGTIN so that hardware and software can distinguish between reading
two different tags (on different product instances) and reading the same tag twice. Avoiding
duplication is absolutely critical to realizing the benefits of RFID technology.

■ Individual product instances are to be tracked or traced through the supply chain by
correlating observations of the product instances obtained in different places at different
times. The unique SGTIN makes it possible to correlate individual observations. Typically
this involves sharing of data among two or more parties in the supply chain.

In principle, assigning unique serial numbers is a straightforward as using a counter 1, 2, 3, …, for
each GTIN to assign the next unused serial number to each instance of that GTIN as it is
manufactured. However, this becomes more complicated when serial numbers for the same product
may be assigned in more than one physical location. Examples of situations in which this occurs are:

■ The same product is manufactured on multiple manufacturing lines in the same building.

■ The same product is manufactured in different manufacturing plants.

■ One or more contract manufacturers are used

■ Product labels (including RFID tags) are affixed to products by one or more 3rd party service
bureaus

 All contents copyright © GS1 US 2012 Page 8 of 23

■ Pre-programmed labels (including RFID tags) are obtained from one or more label service
providers and affixed to the products later

■ Downstream supply chain parties (e.g., retailers) need to assign new serial numbers in
exception situations; e.g., where the original tag is missing, or a product returned by a
customer with the label removed is to be restocked

While this guideline focuses on the above scope, most of the principles of serialization are quite
general and will find applicability in other industries and business settings as well.

3. Business Scenarios
This section illustrates commonly occurring business process scenarios for serialization of products.
The next section illustrates different approaches for managing serial numbers to ensure uniqueness,
and shows how they may be applied to each of the business scenarios in this section.

3.1. Brand Owner Manufacturing on a Single Line
The simplest business scenario for serializing product is when a brand owner manufacturers and tags
a product on a single manufacturing line. Although this single manufacturing line is the only place
where serial numbers for the given product are assigned, a process is needed to ensure uniqueness
of serial numbers. The software that runs the manufacturing line has complete control over what serial
numbers are issued; and so on its own it can employ a method to ensure uniqueness of serial
numbers. This includes any of the methods discussed in Section 4.

3.2. Brand Owner Manufacturing on Multiple Lines
A more complex business scenario is where the same product (same GTIN) is manufactured and
tagged on more than one manufacturing line. This includes having several manufacturing lines within
the same plant, or manufacturing lines that are geographically distributed. In this case, the challenge
is to ensure that one manufacturing line does not use the same serial number that a different
manufacturing line has already used for the same product.

 Software ensures that no
duplicate serial numbers are
issued for this GTIN

 All contents copyright © GS1 US 2012 Page 9 of 23

3.3. Brand Owner Uses Service Bureaus, Contract Manufacturers, or
Other 3rd parties
A brand owner may delegate serialization to 3rd parties in a variety of ways. For example, a brand
owner may use a contract manufacturer who is responsible for manufacturing the product and tagging
it. A brand owner may also use a tagging service bureau who is responsible for tagging finished
products delivered to it by the brand owner, or who supplies pre-programmed tags that are affixed by
the brand owner during in-house manufacturing.

In all of these scenarios, the unique serial number is assigned by a party other than the brand owner,
though in all cases under the direction of the brand owner. This is similar to the scenarios in
Sections 3.1 and 3.2, depending on whether the brand owner contracts with one or multiple 3rd parties,
but with the additional complication that any steps the brand owner takes to ensure uniqueness of
serial numbers must be done in conjunction with the 3rd parties.

3.4. Downstream (Distributor or Retailer) Exception Tagging
In all of the previous scenarios, the brand owner is ultimately responsible for serialization, either
because the brand owner is doing the serialization or the brand owner has contracted to a 3rd party to
do it under his direction. In some cases, however, a party further downstream in the supply chain may
have a need to serialize a brand owner’s product. Typically this party is a retailer, but it could also be
a distributor or other intermediary. In this guideline, we have assumed that the majority of products
are tagged “at source” (i.e., by the brand owner or under the brand owner’s control), and so tagging by
a downstream party only occurs in an exception situation. Such situations may include the following:

■ A retailer (or other downstream party) receives a product with a missing or broken RFID tag,
but wishes to create a new RFID tag so that the product can be handled alongside properly
tagged products.

■ A retailer wishes to restock a product that was returned by the customer, and the original
RFID tag is no longer present.

■ A retailer (or other downstream party) is in a state where its supplier has not yet begun or just
begun source tagging, and the retailer wants to tag its existing untagged inventory rather than
wait for the untagged inventory to be replaced by source-tagged inventory over time.

Each line ensures that no
duplicate serial numbers are
issued on that line. How does
one line ensure it does not
duplicate serial numbers issued
by a different line?

Line 1

Line 2

Line 3

 All contents copyright © GS1 US 2012 Page 10 of 23

In some of these situations (e.g., a broken RFID tag) the retailer may be able to determine the original
serial number (e.g., if the label still has legible human-readable text). In that case, the retailer could
simply replace the tag with an identical copy. Otherwise, the retailer will have to assign brand-new
identification to the product. Section 4.4 discusses some approaches for this case.

4. Approaches to Managing Serialization
This section provides best practice guidance for managing serialization, especially in situations where
the same product is manufactured in multiple locations or by 3rd parties, or where the method of
serialization is expected to change over time.

In these descriptions, it is assumed that 96-bit RFID tags are used. This limits the serial number to be
all-numeric, with no leading zeros, so that the serial number is a decimal numeral in the range 0 ≤
serial < 238. That is, the lowest-numbered serial number is 0, and the highest-numbered serial number
is 274877906943. When encoded into the RFID tag, the serial number is translated into 38 binary
bits, where serial number 0 results in 38 zero bits and serial number 274877906943 results in 38 one
bits. The serial number is generally written in decimal for purposes of human-readable representation,
for encoding into bar codes (if used), in EDI messages such as Advanced Ship Notices, and in EPCIS
data that is used to share supply chain visibility between trading partners. The binary equivalent only
occurs in the RFID tag itself, and in certain low-level software that interfaces directly to RFID readers
and printers. However, when managing the range of available serial numbers, it is sometimes
convenient to think of the binary form of the serial number rather than decimal form. A familiarity with
converting between the two is helpful.

4.1. IT-Based Serialization
The methods in this section are called “IT-based” because they rely upon the information systems of a
tagging party to manage the allocation of serial numbers. The IT systems are used to keep track of
which serial numbers have been allocated and which have not. The software performing this function
can exist at a variety of levels within an enterprise’s IT architecture, from being embedded directly in a
printer or other manufacturing device, to being a function of a Manufacturing Execution System (MES),
to being a corporate-wide enterprise software function. Regardless, they all rely upon stored
information that keeps track of which serial number to allocate next, and so it is important that these
systems be properly secured and backed up.

4.1.1. Sequential Serialization on a Single Line
The basic building block for all IT-based serialization methods is the allocation of serial numbers on a
single manufacturing or tagging line. The simplest method is to have a counter which allocate serial
numbers one at a time, as illustrated below:

Encode GTIN + Serial

Serial  Serial + 1

Serial  1

 All contents copyright © GS1 US 2012 Page 11 of 23

In this picture, the first instance of the product receives serial number 1, the second receives serial
number 2, and so on. If the full 38-bit serial number available in the SGTIN-96 RFID tag is consumed
in this way, there is capacity to serialize 238 = 274,877,906,944 instances of a product (GTIN) without
duplications.

The software responsible for sequential serialization need only keep track of a single number; namely,
the next available serial number in the sequence. This is critical information to ensure that serial
numbers are not duplicated.

The serial number only has to be unique within a given GTIN, and so when there are multiple products
(multiple GTINs) there is a “next number” for each GTIN. When a single software system is
responsible for serializing multiple GTINs, the picture looks something like this:

The serial number assignment database keeps track of the next available serial number for each GTIN
being manufactured. As in the previous case, it is very important that the state information in this
database be carefully backed up.

Typically, brand owners do not construct databases like this themselves, but rather this is a function
that is built into the serialization systems obtained from solution providers. In the case where a brand
owner works with a 3rd party such as a service bureau or contract manufacturer, the systems and
databases are maintained by the 3rd party rather than the brand owner.

4.1.2. Static Allocation of Serial Number Ranges to Multiple Lines
When there are two or more manufacturing lines tagging the same product (same GTIN), they may
each use sequential serialization as described above, but additional care must be taken to ensure that
the two lines do not issue the same serial number. This is true whether the multiple manufacturing
lines belong to the brand owner or to 3rd parties to whom the brand owner contracts (or even a
combination of the two). In the illustrations that follow, “Line #1”, “Line #2”, and “Line #3” will be used

Determine product GTIN

Encode GTIN + Serial[GTIN]

Serial[GTIN]  1
for all GTINs

Serial[GTIN]  Serial[GTIN] + 1

Serial Number Assignment Database
 GTIN NextSerial[GTIN]
00614141123452 253
00614141999996 429
00614141111112 395

 All contents copyright © GS1 US 2012 Page 12 of 23

generically to illustrate three manufacturing lines, but they could also be different service bureaus,
different contract manufacturers, and so forth.

A straightforward way to avoid duplication is to give each manufacturing line a separate set of serial
numbers to use within each GTIN. In the “static allocation” approach, the entire range of possible
serial numbers for a GTIN is divided into large blocks, each block assigned to a manufacturing line,
and each manufacturing line allocates serial numbers for that GTIN within its specified block. There
are many ways that dividing the serial number range into blocks can be done:

Contiguous Ranges in Decimal

Each manufacturing line can be given a contiguous range of serial numbers, expressed in decimal.
Here is an example:

Manufacturing Line Minimum Serial Number Maximum Serial Number

Line #1 0 19999999

Line #2 20000000 39999999

Line #3 40000000 59999999

In this example, each manufacturing line is given a range of 20 million serial numbers to use. For
example, Manufacturing Line #2 is free to assign any serial number, provided the number is greater
than or equal to 20000000 and less than 40000000. If Manufacturing Line #2 is using sequential
serialization, it simply initializes its counter to 20000000. It should also check to make sure the upper
limit is not exceeded, though normally in static allocation the size of the range is well in excess of the
number of products that could be possibly manufactured on any given line.

This scheme is simple to understand, gives flexibility add more manufacturing lines (because the
entire serial number range has not been fully allocated), and the human-readable form of the serial
number makes it easy to recognize which range was used.

Structured Serial Number in Decimal

A slightly different way to conceptualize assigning contiguous ranges of serial numbers is to think of
building up the decimal serial number in pieces. For example, the following rule might be adopted:

■ Each manufacturing line is assigned a two-digit code 10, 11, 12, etc.

■ The serial number assigned on a given manufacturing line is composed of the line’s two digit
code, followed by seven digits assigned by the line.

The following table illustrates the ranges that result from the above rule:

Manufacturing
Line

Line
Code

Serial Number
Pattern

Minimum
Serial Number

Maximum
Serial Number

Line #1 10 10nnnnnnn 100000000 109999999

Line #2 11 11nnnnnnn 110000000 119999999

Line #3 12 12nnnnnnn 120000000 129999999

As the table illustrates, the “structured serial number” approach is really no different than the
“contiguous ranges” approach; the ranges have simply been defined in a different way. The structured
serial number approach (in decimal) results in the size of each range being a power of ten; in the
above example, each range contains 10 million serial numbers.

Contiguous Ranges and Structured Serial Numbers in Binary

In an EPC RFID tag, the serial number is encoded into a binary representation on the RFID chip, as a
38-bit unsigned binary numeral. Low-level RFID reading and writing software often works with the

 All contents copyright © GS1 US 2012 Page 13 of 23

binary form rather than the decimal form (often the binary form is shown in hexadecimal instead).
Describing serial number ranges in binary format has the advantage that it is easier to describe the
use of the full serial number range offered by the 96-bit RFID tag, because the upper limit expressed
in binary is simply 38 “one” bits, whereas the decimal equivalent (274877906943) is not a “round”
number. A structured serial number where the structure is described in binary may also be easier to
manipulate by low-level software that is working in binary rather than decimal. The disadvantage of
viewing serial numbers in binary is that it’s not so easy to identify the range of a serial number when it
is displayed in decimal or in bar code form.

Both the “contiguous range” and “structured serial number” approaches to defining ranges can be
done on the basis of binary numbers. The result is equivalent to using the contiguous range approach
in decimal, but the upper and lower limits expressed in decimal will not be “round” numbers.

Here is an example of a structured approach, expressed in binary:

■ Each manufacturing line is assigned a three-bit binary code 000, 001, 010, etc.

■ The serial number assigned on a given manufacturing line is composed of the line’s 3-bit
code, followed by 35 bits assigned by the line, resulting in a 38-bit serial number.

The following table illustrates the ranges that result from the above rule:

Manufacturing
Line

Line
Code

Serial Number
Pattern (binary)

Minimum Serial Number
(decimal)

Maximum
Serial Number (decimal)

Line #1 000 000bbbbb…bbb 0 34359738367

Line #2 001 001bbbbb…bbb 34359738368 68719476735

Line #3 010 010bbbbb…bbb 68719476736 103079215103

In the “serial number pattern” column above, the actual serial number is 38 bits – in the table, several
bits are omitted for reasons of space. The size of each range is 235 = 34,359,738,368 serial numbers
in each range.

Other Variations

There are many other ways to divide the entire range of serial numbers into different sets for different
manufacturing lines. For example, if there are just two manufacturing lines, one could instruct Line #1
to only use even serial numbers and Line #2 to only use odd serial numbers. This is similar to having
a 1-bit “line code” as illustrated above, but where the line code is the least significant bit of the binary
serial number instead of the most significant bit. This idea can be extended to more than one bit; e.g.,
a 3-bit line code in the least significant position. One advantage of this approach is that the same
structure will still be usable if in the future the manufacturer needs to go beyond the 38-bit serial
number available in the 96-bit RFID tag.

Considerations for Using Static Allocation

The static allocation approach is very straightforward to apply. It also requires no special software. A
record must be kept of what ranges have been allocated to what manufacturing lines, but because this
allocation table is rather small and changes infrequently, even an informal spreadsheet or paper
record may be adequate. A best practice would be to ensure that this record, whether in paper or
electronic form, has adequate backup, and a succession plan for the person or group within the
company that has stewardship of this record.

A challenge with the static allocation method is that the manufacturer to predict in advance both how
many manufacturing lines will be needed for a product (i.e., how many ranges need to be allocated),
and how many products of a given GTIN will be manufactured on those lines (i.e., how big to make
each range). One way to address this challenge is to define many more ranges that are currently
needed, and make each range as large as possible to fill the entire 38-bit serial number capacity.
However, if later it is discovered that more ranges are needed, or more capacity within each range, it
will be very difficult to adjust as previous allocations will need to be retracted to create additional

 All contents copyright © GS1 US 2012 Page 14 of 23

space. Alternatively, the initial static allocation can be set so that there is a large portion of the serial
number space not allocated to any range. For example, the 38-bit serial number space could be
divided in two pieces, and then serial numbers beginning (in binary) 0bbbb…. would be further divided
into ranges for each manufacturing line, and serial numbers beginning 1bbbb…. would be reserved for
future allocation. This gives flexibility in the future, at the expense of less available capacity for each
range today.

Static allocation requires careful thought ahead of time in devising a suitable plan. Companies should
consider the number of manufacturing lines for a given product both now and in the future (including
contract manufacturers and service bureaus), and the likely volume of product both overall and on a
per-line basis. The answers to these questions might not be the same for every product, and it is
conceivable that different allocation plans could be used for different GTINs.

4.1.3. Dynamic Allocation of Serial Number Ranges to Multiple Lines
As noted above, the virtue of the static allocation method is very simple bookkeeping, with the
disadvantage that the needs for serial numbers by different manufacturing lines must be predicted in
advance. Dynamic allocation provides an alternative approach intended to mitigate the disadvantages
of static allocation.

In dynamic allocation, ranges are allocated to manufacturing lines on a demand-driven basis, rather
than in advance. This typically requires the deployment of a software system whose function is to
assign ranges of serial numbers in response to requests. The following figure illustrates how this
works:

The brand owner deploys a “serial number range server”, shown at the top of the figure, which is
responsible for allocating blocks of serial numbers for each GTIN that the brand owner serializes. The
serial number range server provides a network-based application programming interface (API) through
which a manufacturing line can request a block of serial numbers. A manufacturing line issues a
request, in which it specifies a GTIN, and a quantity of serial numbers it wants for that GTIN. The
serial number range server allocates a block of unused serial numbers of the requested size, and
responds to the manufacturing line by providing those serial numbers (e.g., by listing all the serial

Serial Number Assignment DB

GTIN NextSerial[GTIN]
00614141123452 20000
00614141999996 12000
00614141111112 50000

Request: I need 1000
serial numbers for
GTIN
00614141999996

GTIN 00614141123452
Serial range 19000-19999

GTIN 00614141999996
Serial range 11000-11999

Serial # Range Interface

Response:
Serial range
10000-10999

Line #1 Line #2 Line #3

Serial
Number
Range
Server

 All contents copyright © GS1 US 2012 Page 15 of 23

numbers in the block, or providing the minimum and maximum numbers). The figure above illustrates
Line #1 and Line #2 both requesting a block of 1000 serial numbers for GTIN 00614141999996.
Line #1 receives serial numbers 10000 – 10999, while Line #2 receives serial numbers 11000 –
11999.

The serial number range server keeps track of the serial numbers allocated so that each request for a
given GTIN is answered with a different range of numbers. The simplest implementation just tracks
what the next available serial number is, as illustrated in the figure. The server might also keep a
record of the blocks previously allocated and to which manufacturing line each was given.

While there is currently no standard defining the interface to a serial number range server (i.e., the API
shown in the figure), there are several commercial software implementations available. These
commercial implementations come with a proprietary API, but they are all roughly equivalent in the
content of the request and response. If the brand owner wants to use dynamic range allocation with
contract manufacturers, service bureaus, or other third parties, a provision must be made for the 3rd
party to interface with the serial number range server maintained by the brand owner. Conversely,
there are commercial offerings where a serial number range server is offered to brand owners via the
Internet in a Software-as-a-Service (SaaS) mode. In that case, the brand owner’s manufacturing lines
interface to the SaaS service via the Internet to obtain serial number ranges.

4.2. Chip Based Serialization (TID)
All of the serialization methods discussed in Section 4.1 are based on the brand owner controlling its
own serial number assignment through information systems it deploys. An alternative approach
makes use of an RFID tag hardware feature called the Tag Identifier (TID). Because this method
relies upon a hardware feature of the RFID tag, it is called “chip-based” serialization.

4.2.1. About the TID
The TID is a special memory within the RFID tag that holds information about the RFID tag itself, as
opposed to information about the object to which the tag is affixed. All RFID tags include information
in the TID that identifies the maker of the chip and the model (i.e., which of several different chip
products the maker offers).1 Many RFID tags also include additional information in the TID. One of
these additional pieces of information is a serial number that is assigned by the manufacturer of the
RFID chip – unique among all RFID chips of the same make and model. This serial number is
referred to as the TID serial number.

The TID serial number is different than the serial number that is part of the EPC. The EPC consists of
a GTIN that identifies the product and a serial number assigned by the brand owner to identify a
specific instance of that product. The serial number in the EPC is unique within a given GTIN. The
TID serial number, in contrast, is assigned by the RFID chip manufacturer before the chip is affixed to
a product (indeed, before the chip is even made into an RFID tag). The chip manufacturer has no idea
to what product the chip will eventually be affixed, and so the TID serial number has nothing to do with
the GTIN or EPC. The chip manufacturer simply changes the serial number for each chip it makes. If
the chip make and model information from the TID is combined with the TID serial number, the result
is a number that is different for every RFID tag manufactured by anybody.

1 It is important to understand the difference between the RFID chip and an RFID tag. An RFID tag is what a brand owner
affixes to a product. An RFID tag contains several parts. There is the paper or plastic label that attaches to the garment or
other product. Embedded within the label is an RFID “inlay” that contains the RFID components. The inlay includes a
tiny silicon RFID chip, less than a millimeter square, and a much larger metallic antenna. The RFID chip contains all of the
electronic components that make the RFID tag work, including the radio receiver and the memory that holds the EPC and
other information. RFID chips are typically made one company, then manufactured into a complete RFID tag by a different
company. While there are many different RFID tag companies, there are relatively few RFID chip companies. The TID
identifies the company that makes the RFID chip, not the maker of the RFID tag. This is because the TID is programmed
at the time the chip is manufactured, before it is sold to the company who manufactures it into an RFID tag.

 All contents copyright © GS1 US 2012 Page 16 of 23

4.2.2. Using the TID to Serialize Products
To create a unique EPC for a product having a given GTIN, the brand owner needs a serial number
that is different from every other serial number assigned for that GTIN. The TID serial (including the
make and model) is different on every RFID chip. The idea in chip-based serialization is to leverage
the TID serial number to create the EPC serial number. In other words, the brand owner creates an
SGTIN by reading the TID serial from the RFID tag he is about to affix to the product, and combining
the TID serial number with the GTIN to arrive at an SGTIN. This SGTIN will be different from every
other SGTIN: the serial number by itself is unique, and so the combination of GTIN+serial is clearly
unique as well. For a given GTIN, the serial numbers used will appear to be fairly random as
compared to sequential allocation – there will be many “holes” in the serial number range for a given
GTIN, corresponding to serial numbers that were used for other GTINs. But the overall serial number
range is large enough to provide sufficient capacity even if there are many such “holes.”

This idea is not as straightforward as it appears, however, because the TID serial number as specified
in the EPC Tag Data Standard does not fit into the EPC serial number. On a 96-bit RFID tag, the
serial number in the EPC is 38 bits, giving a capacity for 238 = 274,877,906,944 different serial
numbers. The TID as specified in the EPC Tag Data Standard, however, has a much more complex
format, illustrated below:

The first eight bits of the TID are a header that is the same for all EPC RFID tags. The next 12 bits
indicate the make of the chip, and the 12 bits after that indicate the model. Following that are 16 more
bits, three of which indicate the length of the TID serial number (the other 12 bits in this segment are
not relevant to this guideline). After that comes the TID serial number itself, which can be 48, 64, 80,
96, 112, 128, or 144 bits in length. Recalling that the chip make and model must be combined with
the TID serial in order to arrive at a number that is unique across all RFID chips, this implies a
minimum of 12+12+48 = 72 bits must be extracted from the TID to make a unique serial number, and
possibly as many as 12+12+144 = 168 bits, depending on how many bits the chip manufacturer has
chosen to use in its TID.

Regardless of the size of the TID, the number of bits that must be extracted to have a guaranteed
unique serial number across all RFID chips is many more than the 38 bits that are available in the
serial portion of the EPC. Blindly taking 38 bits out of the TID is not sufficient to avoid duplicate serial
numbers because two RFID chips might have TIDs that are the same in those chosen 38 bits. On the
other hand, if the brand owner knew how the chip manufacturer was assigning its TID serial numbers,
the brand owner could predict whether duplication is a risk. For example, if the brand owner knows
the chip manufacturer simply starts at TID serial number 1 and increments by one for each chip it
makes, then with that knowledge the brand owner could extract the least significant 38 bits of the TID
serial number. Many of the available serial numbers won’t be used for the brand owner’s products –
they are spread across the total production by that chip manufacturer. The brand owner must work
with the chip manufacturer to understand the period of time over which duplication becomes a risk.
Not all chip manufacturers assign TID serial numbers sequentially as in the above example, and so
the choice of which TID bits to use must also be guided by the chip manufacturer.

With this in mind, chip-based serialization works like this:

11100010 Make Model LLLxxxxxxxxxxxxx TID Serial

8 bits 12 bits 12 bits 16 bits 48 – 144 bits

Header –
always the same

3 bits (LLL) indicate the length of the TID serial.
Remaining bits not relevant to this guideline

 All contents copyright © GS1 US 2012 Page 17 of 23

When the brand owner programs an RFID tag to put on a product, he first reads the contents of the
RFID tag’s TID memory. The brand owner then applies a “formula” for extracting some number of bits
out of the TID memory contents – possibly a full 38 bits, possibly fewer as discussed below – and then
uses the result of the formula together with the GTIN to create the EPC.

The “formula” for extracting the right bits from the TID has to be constructed in a way that fits with the
way the chip manufacturer assigns TID serial numbers. Because chip manufacturers generally do not
reveal their method for assigning TID serial numbers, the brand owner must rely upon the chip
manufacturer to provide a suitable formula, tied to the particular make and model of chip the brand
owner uses. The chip manufacturer must provide three things to the brand owner:

■ The formula itself – that is, exactly what bits of the TID should be extracted, and how they
should be manipulated to arrive at the bits that will go into the EPC serial number.

■ How many bits the formula yields. This might be a full 38 bits, or it might be fewer as
discussed below.

■ Over what period of time does the chip manufacturer expect the formula to yield unique
results (i.e., no duplicate serial numbers), and is this an absolute guarantee or is it just a high
probability. This is partly a function of how the chip manufacturer assigns the serial numbers,
and partly a function of how many chips using the same formula the chip manufacturer
expects to make over time.

With this information, the brand owner will know how to assign serial numbers, and what to expect in
terms of uniqueness.

Note that the application of the formula is performed by the software that controls the device that is
programming the RFID tags. Often, the formula is built into a device such as an RFID printer, and so
the details of how the formula works is arranged between the chip manufacturer and the printer
vendor. The brand owner only needs to know how many bits the formula uses (for reasons discussed
below) and the uniqueness properties promised by the chip manufacturer for that formula.

The formula has to be coordinated with the chip manufacturer’s method for assigning TID serial
numbers. It is important to have a clear understanding of what chips a formula applies to, and what
the uniqueness guarantees are.

GTIN EPC (SGTIN-96)

TID Serial Number
TID Serialization “Recipe”

Selects up to 38 bits from

TID Serial Number

EPC Serial Number

 All contents copyright © GS1 US 2012 Page 18 of 23

4.2.3. Chip-based Serialization on Multiple Manufacturing Lines
In Section 4.1, IT-based serialization using simple sequential assignment was introduced. When this
process was extended to multiple manufacturing lines, it was necessary for the brand owner to use
some means to coordinate the ranges used by the different lines. Static allocation and dynamic
allocation were introduced as two methods for doing this.

With chip-based serialization, multiple manufacturing lines can be accommodated without any such
coordination. Because the TID serial number is unique across all RFID chips, any chip-based serial
number will be different from every other, even if it is assigned on a different manufacturing line. So to
accommodate multiple manufacturing lines, each line uses the appropriate formula(s) for the chips
used on that line. There is no pre-allocation of ranges or bookkeeping as in static range allocation
(Section 4.1.2), nor any serial number range server as in dynamic range allocation (Section 4.1.3).
Adding a new manufacturing line for the same product requires no extra work – no new ranges to
allocate, and no new integration with a serial number range server.

It is important to note, however, that a chip-based serialization approach does not preclude a brand-
owner from using an IT infrastructure for recording the serial numbers that have been applied to
product variable data, data sharing with trading partners, and other purposes.

4.2.4. Considerations for Using Chip-based Serialization
When using chip based serialization, exactly which serial numbers are used is unpredictable from the
brand owner’s standpoint. TID serial numbers are not necessarily assigned sequentially by the chip
manufacturer. Even if the chip manufacturer assigns sequential TID serial numbers, the EPC serial
numbers for a given GTIN will not appear to be sequential, because only a fraction of chips will be
affixed to instances of that GTIN. All the brand owner knows is that the serial numbers yielded by the
TID serialization formula will be unique, within the uniqueness guarantee for the formula provided by
the chip manufacturer.

Deriving all 38 bits of the GTIN serial number from the TID presents difficulties if the brand owner
wants to use more than one serialization method, or wants to switch to a different chip manufacturer
(implying a different formula), or wants to switch from chip-based serialization to some other method.
Let us illustrate how the difficulty arises. Consider a brand owner who is using IT-based serialization,
assigning his own numbers sequentially. After manufacturing one million products, the brand owner
decides to switch to dynamic range allocation. The brand owner knows that the only serial numbers
he has allocated fall within the range 1 – 1,000,000. The brand owner switches to dynamic range
allocation by initializing his serial number range server to begin issuing blocks at serial number
1,000,001.

Now consider a similar situation where a brand owner has been using chip-based serialization, where
the formula yields the full 38 bits of the serial number. After manufacturing one million products, there
are still a huge number of available serial numbers – out of 274+ billion available serial numbers, over
99.9996% are still available for use. However, the remaining numbers are not in one contiguous
range. Even if the brand owner kept a record of what serial numbers were previously used, they will
be scattered randomly throughout the 274+ billion possible numbers. It is not necessarily
straightforward to find usable ranges that could be applied to other serialization methods, especially if
a structured method is to be used. A similar problem occurs if the brand owner wants continue to use
chip-based serialization but switch to a different chip manufacturer having a different formula – there is
no guarantee that the new formula will yield numbers that are different from the old numbers.

A best practice for chip-based serialization, therefore, is to take steps to protect against this kind of
change. The way this is done is to use a chip-based formula that yields fewer than 38 bits. To
illustrate how this works, here is an example serialization plan:

■ The brand owner decides to use chip-based serialization, using a formula that yields 36 bits of
serial number from the TID.

 All contents copyright © GS1 US 2012 Page 19 of 23

■ To create the 38-bit EPC serial number for a given tag, combine two zero bits (00) with the
36 bits yielded by the TID serialization formula, for a total of 38 bits. In this way, all serial
numbers will begin with two zero bits.

■ Serial numbers beginning with 01, 10, and 11 are reserved by the brand owner for future use.

The brand owner now has the flexibility to change methods in the future by using one of the reserved
prefixes. For example, if the brand owner switches to a different chip manufacturer, he would ask that
chip manufacturer for a 36-bit formula, and when using the new chips create the serial number by
combining the bits 01 with the 36 bits from the new formula. Some of the 36-bit patterns yielded from
the new formula may be duplicates of those yielded by the old formula, but the overall serial numbers
will not be duplicates because the first two bits will be different. Likewise, the brand owner could
switch to IT-based serialization, using a serial number range that begins with one of the reserved
prefixes.

This is why the definition of a TID serialization formula provided for the possibility of the formula
yielding fewer than 38 bits. Now in general, a formula yielding fewer bits will have a shorter interval of
time before duplication may occur, because there are fewer possible serial numbers in fewer bits. For
example, a chip manufacturer may offer a 38-bit formula that has a 10-year guarantee of no rollover,
and a 37-bit formula that only has a 5-year guarantee. So the brand owner has a trade-off: longer
guarantee with less flexibility to change, or vice versa.

The idea of using prefixes to allow for changing from one serialization method to another can be
generalized to allow for several different methods simultaneously. This is discussed in the next
section.

4.3. Creating a Top-level Serialization Plan
Sections 4.1 and 4.2 outline IT-based and chip-based approaches that a brand owner can employ to
manage serialization. These approaches give a brand owner a wide variety of options that can be
tailored to meet that brand owner’s particular business requirements.

A best practice for brand owners is to create a top-level plan to define what serialization approaches
are to be used. A good top-level plan clearly specifies what approach is to be used, drawing from the
variety of approaches discussed in this guideline. In constructing a top-level plan, the brand owner
should gather the following information:

■ What products are to be serialized? What are their GTINs?

■ What is the expected volume of each GTIN that will be manufactured over the life of the
GTIN? This helps to assess how many serial numbers will be needed over time.

■ Where will serialization take place? In the brand owner’s own manufacturing facility, in 3rd
parties contracted by the brand owner (contract manufacturers, serviced bureaus, etc), by
other supply chain parties?

■ How many different internal facilities and/or 3rd parties will be used?

■ What IT capabilities are available, or can be made available, to manage serialization?

■ How are the answers to the above expected to change over time?

These questions will help select among the various IT-based and chip-based approaches outlined
earlier.

The conclusion from analyzing the available approaches is often that more than one approach needs
to be supported. Sometimes, the brand owner sees a need to use two approaches simultaneously;
e.g., if a given product is manufactured both in-house and by contract manufacturers, the brand owner
may make a large static allocation to the contract manufacturers, and use dynamic allocation to
manage multiple in-house manufacturing lines. Or, a brand owner needs to use two different chip
manufacturers simultaneously, and each provides a different chip-based serialization formula. Other

 All contents copyright © GS1 US 2012 Page 20 of 23

times, only one method is to be used at any given time, but the brand owner wants flexibility to change
to a different method in the future; e.g., the brand owner may use chip-based serialization using chip
manufacturer A today, but wants the flexibility to switch to chip manufacturer B or even IT-based
serialization in the future.

This means that a top-level plan will generally include a high-level allocation of the full 38-bit serial
number space, so that these different choices can be accommodated. Here is an example to illustrate
the concept. Brand Owner XYZ needs to meet the following requirements for its ABC product:

■ Some units of ABC are manufactured in-house. XYZ has 10 manufacturing lines that might be
used for this purpose, and expects to add 10 more lines over the next 20 years. Each
manufacturing line is capable of managing its own serial numbers using sequential allocation.

■ Some units of ABC are manufactured by contract manufacturers. This is only done at times of
peak demand or when in-house facilities are unavailable, so the volume is relatively small
compared to in-house manufacture. XYZ would like the contract manufacturers to use chip-
based serialization to minimize the amount of bookkeeping required to manage serialization in
this case. All of XYZ’s contract manufacturers use RFID chips made by the Acme RFID Chip
Co.

■ XYZ recognizes that its industry is changing, and that its approach to manufacturing may
change over the next 10 years. It wants the flexibility to alter its decisions regarding
serialization in the future.

With these goals in mind, here is what a top-level serialization plan might look like for XYZ’s ABC
product:

Serial Number
Range (binary)

Intended Use Capacity

00ppppppsss…sss In-house manufacturing. This is further
divided into ranges for each manufacturing
line, with the six bits (pppppp) assigned
statically to each line, and the remaining
30-bit unique number generated on each
line.

Current assignments for pppppp are:

000000 = Boston line #1
000001 = Boston line #2
000010 = Boston line #3
000011 = Chicago line #1
000100 = Chicago line #2
000101 = Rotterdam line #1
000110 = Oslo line #1
000111 = Oslo line #2
001000 = Boston line #4
001001 = Reserved for RFID lab

Up to 64 different manufacturing
lines, each with a capacity to
issue 230 = 1,073,741,824
unique serial numbers.

01ccbbbbbb…bbb Reserved for chip-based serialization. For
chips made by Acme RFID Chip Co, the bits
cc are set to 00. Acme must provide a 34-
bit formula to complete the serial number.
Other values of cc (01, 10, and 11) are
reserved for future use; e.g., in case a
different chip manufacturer is selected.

Up to four different chip-based
serialization formulas over time.

 All contents copyright © GS1 US 2012 Page 21 of 23

Serial Number
Range (binary)

Intended Use Capacity

1bbbbbbbbbbbbb Reserved. All serial numbers whose most
significant bit is “1” are reserved for future
use.

Half of all possible serial
numbers for 96-bit tags are
reserved for future use, a total
of 237 = 137,438,953,472
reserved numbers.

In this table, the 38-bit serial number is divided into three ranges, the first two each being a quarter of
the total range, and the remaining half reserved for future use. The first range is allocated for
sequential serialization by in-house manufacturing lines, and this range is further subdivided by static
allocation to provide an individual range (approximately 1 billion serial numbers) for each line. There
is room for up to 64 manufacturing lines, of which 10 are used today. The second range is allocated
for chip-based serialization by third parties, of which a quarter has been designated for Acme tags
using a 34-bit formula. In this way, there is adequate space for all current serialization methods, and
room for change in the future.

In most cases, a serialization plan will not be as complex as depicted above. Some brand owners
may simply divide the available space in two, using one half for a single method that is in use today,
and the remaining half reserved for future use. Or, a brand owner may choose to commit to chip-
based serialization forever, and may choose a chip-based serialization formula that yields all 38 bits.
In general, the larger the brand owner, the higher volume the product, and/or the more complex the
manufacturing arrangement, the more complex the top-level serialization plan will be.

Regardless of the methods chosen in the top-level plan, the brand owner is still responsible for quality
control of serialization, including ensuring that the correct GTIN and serial number according to the
plan is encoded into the tag, that the tag is readable, and that verification is performed to ensure serial
numbers are not duplicated.

4.4. Supporting Downstream Exception Serialization
All of the preceding discussion pertains to serialization “at source” – by the brand owner directly or by
a third party contracted by the brand owner. There are some situations, however, where serialization
may be required downstream in the supply chain from the brand owner; for example, where the
original tag is missing and replaced by a distributor or retailer, a product returned by a customer to a
retailer with the label removed is to be restocked, and so on. These are referred to here as “exception
tagging” scenarios, as they are assumed to be relatively infrequent compared to the volume of source
tagged product. In such exception situations, the brand owner does not have direct control over the
serial number being created – it is chosen by a downstream party. This introduces additional
challenges not considered in the previous sections.

In principle, any of the previously discussed approaches could be extended to accommodate
serialization by a downstream party. However, there are practical problems which may make these
methods awkward or infeasible at the present time for some supply chain participants. In particular:

■ Static Allocation In principle, a brand owner can reserve a range of the serial number space
for use by its downstream trading partners, and allocate a separate subrange for each
distributor and retailer who might need to generate an exception serial number. However, this
can create challenges for some brand owners in communicating ranges to all downstream
trading partners who might need to create exception tags. It may also be challenging for the
downstream distributors or retailers who may need to manage different subranges provided by
a multitude of suppliers.

■ Dynamic Allocation In principle, a brand owner could deploy a serial number management
server to allocate ranges, and make this server available via the Internet for use by
downstream trading partners. However, there are currently no standard message format for

 All contents copyright © GS1 US 2012 Page 22 of 23

serial number range management, and so distributors and retailers might have to manage
different proprietary interfaces from multiple suppliers.

■ Chip-based Serialization In principle, downstream parties could use chip-based serialization
to obtain unique serial numbers without any prior coordination with the brand owners.
However, this requires that the retailer use the same top-level serialization plan as the brand
owner, which can constrain the retailer’s choice of chip manufacturer depending on the brand
owner’s top-level plan. As different brand owners may make different choices in this regard,
again the distributor or retailer might have to do something different for each brand owner.

These methods may work effectively for certain brand owners and their downstream trading partners,
but because of the limitations it is not possible at this time to provide a single rule that all downstream
parties to follow to serialize products from any brand owner. Retailers may work out bi-lateral
arrangements with individual brand owners who make provision for the retailer in their top-level
serialization plans.

Because of this, at the present time some retailers avoid attempting to create a serialized GTIN to
identify products that require exception tags. Instead, such retailers will affix some other sort of
identification to such products. Several approaches to this are in common use:

■ The retailer will program an EPC using an internal code; e.g., an SGTIN based on a retailer-
created GTIN. The association of this internal code to the product’s actual GTIN is made in a
database the retailer uses for its own business processes.

■ The retailer will use a binary encoding of the tag that goes outside of the EPC Tag Data
Standard, resulting in RFID tag contents that are different from any source-tagged product
(which all carry legitimate EPCs), but from which the product GTIN can be recovered
according to a retailer’s proprietary scheme.

■ The retailer will program an RFID tag using a Global Individual Asset Identifier (GIAI),
providing a globally unique identifier but one which is not related to the GTIN of the product.
The retailer may associate the GIAI to the product GTIN in a database the retailer uses for its
own business processes, or embed the GTIN into the GIAI serial number in a proprietary way.

All of these approaches allow the retailer to ensure that exception tags will not duplicate each other or
proper SGTIN tags created at source. However, because exception tags created in this way do not
carry proper SGTINs, it creates difficulties for sharing data about exception-tagged products across
the supply chain.

GS1 will continue to work with industry to ensure its requirements are met over time. This includes the
possibility of future standards developments to provide additional options for SGTIN-based exception
tagging, suitable for use in an open supply chain where any downstream party might create exception
tags for products from any brand owner.

 All contents copyright © GS1 US 2012 Page 23 of 23

	1. Background
	2. Scope
	3. Business Scenarios
	3.1. Brand Owner Manufacturing on a Single Line
	3.2. Brand Owner Manufacturing on Multiple Lines
	3.3. Brand Owner Uses Service Bureaus, Contract Manufacturers, or Other 3rd parties
	3.4. Downstream (Distributor or Retailer) Exception Tagging

	4. Approaches to Managing Serialization
	4.1. IT-Based Serialization
	4.1.1. Sequential Serialization on a Single Line
	4.1.2. Static Allocation of Serial Number Ranges to Multiple Lines
	4.1.3. Dynamic Allocation of Serial Number Ranges to Multiple Lines

	4.2. Chip Based Serialization (TID)
	4.2.1. About the TID
	4.2.2. Using the TID to Serialize Products
	4.2.3. Chip-based Serialization on Multiple Manufacturing Lines
	4.2.4. Considerations for Using Chip-based Serialization

	4.3. Creating a Top-level Serialization Plan
	4.4. Supporting Downstream Exception Serialization

