Retail Grocery and Foodservice Application of GS1 System of Standards to Support FSMA 204

Guideline

Release 2.0, March 12 2024
Table of Contents

1 Preface .. 6
 1.1 History and Background .. 7
 1.2 Introduction to the FSMA 204 Final Rule ... 7
 1.3 Purpose ... 7
 1.4 Future Releases ... 8
 1.5 Scope ... 8
 1.6 Normative References ... 9

2 Overview of the FSMA 204 Final Rule .. 10
 2.1 The Food Traceability List (FTL) ... 10
 2.2 Product and Location Identification, Description, Traceability Lot Code, Traceability Lot Code Source, and Traceability Lot Code Source Reference .. 10
 2.2.1 Product and Location Descriptions ... 10
 2.2.2 The U.S. FDA Definition of Traceability Lot Code (TLC) ... 10
 2.2.3 The U.S. FDA Definition of TLC Source and TLC Source Reference 11
 2.3 Records of Critical Tracking Events (CTEs) and Key Data Elements (KDE) 12
 2.4 Traceability Plan Requirements ... 12
 2.5 Implementation Timeline, Record Retention, and Response Timing ... 12
 2.6 What Foods and Persons are Exempt from the Final Rule? ... 13

3 Overview of GS1 Standards .. 14
 3.1 Identify .. 15
 3.1.1 The Importance of Using GS1 Identification Keys for Traceability 15
 3.1.2 Unique Identification of Products – Global Trade Item Numbers (GTINs) 16
 3.1.3 Unique Identification of Locations – Global Location Numbers (GLNs) 18
 3.1.4 Unique Identification of Logistics Units – Serial Shipping Container Code (SSCC) 19
 3.1.5 The Traceability Lot Code in the GS1 System of Standards .. 21
 3.2 Capture ... 21
 3.2.1 More on Application Identifiers (AIs) .. 21
 3.2.2 Guidance on Data Carrier Usage ... 23
 3.2.3 Barcode Types and Uses ... 25
 3.2.4 RFID ... 27
 3.3 Share ... 27
 3.3.1 FSMA 204 Data Sharing Application ... 27
 3.3.2 Master Data, Transaction Data, and Visibility Event Data Differences 28
 3.3.3 Master Data ... 29
 3.3.4 Transactional Data .. 31
 3.3.5 Visibility Event Data .. 32

4 Applying the GS1 System of Standards to FSMA 204 ... 34
 4.1 Supply Chain Process Flows for FSMA 204 .. 34
 4.1.1 End-to-End Flows and the Final Rule ... 34
4.2 Critical Tracking Events (CTEs) and Key Data Elements (KDEs) Recordkeeping and Sharing ... 38
 4.2.1 Data Sharing Under the Final Rule ... 38
 4.2.2 Overview of the CTEs and KDEs of the Final Rule ... 39
4.3 Product Description KDEs .. 42
 4.3.1 Commodity ... 44
 4.3.2 Variety ... 44
 4.3.3 Product Name .. 45
 4.3.4 Packaging Size .. 45
 4.3.5 Packaging Style .. 46
4.4 Location Description KDEs ... 46
 4.4.1 Business Name .. 47
 4.4.2 Physical Location Address .. 47
 4.4.3 City ... 47
 4.4.4 State ... 48
 4.4.5 Zip Code ... 48
 4.4.6 Phone Number .. 48
 4.4.7 Comparable Information for Locations Outside the US 48
 4.4.8 Harvester Business KDEs .. 48
 4.4.9 Growing Areas Coordinates .. 49
4.5 Shipping CTE and the Advance Ship Notice (ASN) 49
 4.5.1 Traceability Lot Code ... 49
 4.5.2 Quantity and Unit of Measure of the Food ... 50
 4.5.3 Product Description of the Food ... 50
 4.5.4 Location Description of Immediate Subsequent Recipient (other than Transporter) 50
 4.5.5 Location Description for the Location From Which You Shipped the Food 50
 4.5.6 Date the Food Was Shipped .. 51
 4.5.7 Location Description for the Traceability Lot Code Source or the Traceability Lot Code Source Reference ... 51
 4.5.8 Shipment Reference Document Type ... 52
 4.5.9 Shipment Reference Document Identifier ... 52
4.6 Mapping FSMA 204 CTEs and KDEs with GS1 EPCIS 52
 4.6.1 EPCIS Mapping to FSMA 204 Key Data Elements (KDEs) Traceability Lot Code 53
 4.6.2 Quantity and Unit of Measure of the Food ... 53
 4.6.3 Product Description of the Food ... 53
 4.6.4 Location Description for the Immediate Previous Source (other than a transporter) 53
 4.6.5 Location Description for Where the Food Was Received 53
 4.6.6 Date the Food was Received .. 54
 4.6.7 Location Description for the Traceability Lot Code Source or the Traceability Lot Code Source Reference ... 54
 4.6.8 Reference Document Type and Reference Document Number 54

5 Best Practices for Mixed Pallets .. 55

6 Appendix A – Detailed Steps for Supply Chain Process Flows 59
 6.1 Whole Tomatoes Detailed Process Steps ... 59
 6.2 Ready to Eat Salad Detailed Process Steps ... 60
6.3 Frozen Shrimp Aquaculture Farmed Detailed Process Steps ... 62
6.4 Peanut Butter Crackers Detailed Process Steps ... 66

7 Appendix C - Overview of GS1 System of Standards to Support Traceability .. 69
About GS1

GS1® is a neutral, not-for-profit, global organization that develops and maintains the most widely used supply chain standards system in the world. GS1 Standards improve the efficiency, safety, and visibility of supply chains across multiple sectors. With local Member Organizations in over 110 countries, GS1 engages with communities of trading partners, industry organizations, governments, and technology providers to understand and respond to their business needs through the adoption and implementation of global standards. GS1 is driven by over a million user companies, which execute more than six billion transactions daily in 150 countries using GS1 Standards.

About GS1 US

GS1 US®, a member of GS1 global, is a not-for-profit information standards organization that facilitates industry collaboration to help improve supply chain visibility and efficiency through the use of GS1 Standards, the most widely used supply chain standards system in the world. Nearly 300,000 businesses in 25 industries rely on GS1 US for trading partner collaboration that optimizes their supply chains, drives cost performance and revenue growth, while also enabling regulatory compliance. They achieve these benefits through solutions based on GS1 global unique numbering and identification systems, barcodes, Electronic Product Code (EPC®)-based RFID, data synchronization, and electronic information exchange. GS1 US also manages the United Nations Standard Products and Services Code® (UNSPSC®).

About Foodservice GS1 US Standards Initiative

The Foodservice GS1 US Standards Initiative serves as a strategic effort in which industry trade associations and individual companies may choose to join on a voluntary basis to assist with their company’s adoption and implementation of GS1 Standards. Nothing herein should be construed as constituting or implying an agreement among foodservice companies to adopt or implement GS1 Standards. Nothing herein should be construed as constituting or implying an agreement regarding any company’s prices, output, markets, or dealings with customers and suppliers. Nothing herein is inconsistent with the proposition that each participating company must and will exercise its independent business judgment on all standards adoption.

About the GS1 US Retail Grocery Initiative

The GS1 US Retail Grocery Initiative represents a broad cross section of industry. Today, suppliers, manufacturers, distributors, wholesalers, retailers, academic institutions, regulatory agencies, and trade associations are working together to help address challenges where GS1 Standards can have a positive impact in enhancing data quality, enabling end-to-end supply chain visibility, and improving operational efficiencies.
Document Summary

<table>
<thead>
<tr>
<th>Document Item</th>
<th>Current Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Title</td>
<td>Application of GS1 System of Standards to Support FSMA 204</td>
</tr>
<tr>
<td>Date Last Modified</td>
<td>March 12, 2024</td>
</tr>
<tr>
<td>Document Description</td>
<td>This implementation guideline was prepared by the GS1 US FSMA 204 Workgroup to assist the United States’ food industry with implementing GS1 Standards for traceability and specifically to help meet the requirements outlined in the Final Rule.</td>
</tr>
</tbody>
</table>

Log of Changes

<table>
<thead>
<tr>
<th>Release Number – Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 1.0 – March 2023</td>
<td>Release/publication</td>
</tr>
<tr>
<td>Release 2.0 – March 2024</td>
<td>Updates based on industry need</td>
</tr>
</tbody>
</table>
1 Preface

1.1 History and Background

In July 2020, the U.S. FDA announced its 10-year plan to improve food safety, *The New Era of Smarter Food Safety*. This is a framework to “respond more rapidly to outbreaks, address new business models, reduce contamination of food, and foster the development of food safety cultures.” It encourages the use of technology, improved traceability, and establishes a food safety culture throughout all members of the supply chain. For more information go to: https://www.U.S. FDA.gov/food/new-era-smarter-food-safety.

On November 21, 2022, the United States Food and Drug Administration (U.S. FDA) published a Final Rule titled, Requirements for Additional Traceability Records for Certain Foods, which is a key component of the U.S. FDA’s New Era of Smarter Food Safety Blueprint and implements Section 204(d) of the U.S. FDA Food Safety Modernization Act (FSMA), which was signed into law in 2011. This rule is commonly referred to as “FSMA 204”. Throughout the remainder of this document, ‘Final Rule’ and FSMA 204 will be used interchangeably as shorthand for referring to this regulation. The U.S. FDA website can be accessed HERE. The U.S. FDA’s Federal Register website can also be accessed HERE. If you would like to submit a question for clarification to the U.S. FDA Technical Advisor Network (TAN) you can access it here: https://www.U.S. FDA.gov/food/food-safety-modernization-act-fsma/fsma-technical-assistance-network-tan

The U.S. FDA has also provided its public response to all the comments received from all the different stakeholders in the food supply chain. This document will reference these public comments and responses as additional sources of information to help support how GS1 Standards can be leveraged.

1.2 Introduction to the FSMA 204 Final Rule

The Final Rule requires companies that physically handle certain foods across the supply chain to keep additional records, which can assist in tracebacks during an investigation of a foodborne illness outbreak. These requirements do not apply to all foods but to a subset listed in the U.S. FDA’s Food Traceability List (FTL). This list developed by the U.S. FDA is intended to cover which foods necessitate additional record-keeping requirements to protect public health.

The rule outlines specific Key Data Elements (KDEs) of Critical Tracking Events (CTEs) that need to be recorded and shared with the U.S. FDA, upon request, and at minimum, through a sortable electronic spreadsheet. Except for the Shipping CTE and select upstream activities, the rule does not require companies to share records with their trading partners, only to keep records in case the U.S. FDA requests them. The rule does not specify the use of data carriers (e.g., barcodes or RFID tags) or additional formats beyond a sortable spreadsheet for the exchange of data with the U.S. FDA or between trading partners. The rule includes several exceptions for specific foods or entities where records are not required.

1.3 Purpose

This implementation guideline was prepared by the GS1 US FSMA 204 Workgroup to assist the United States’ food industry with implementing GS1 Standards for traceability and specifically to help meet the requirements outlined in the Final Rule. The guidance excludes the point of consumption and is limited to batch/lot traceability.

In response to this, members of the food industry in the US are preparing their systems and business processes to meet the requirements. Specifically, many food supply chain stakeholders have been implementing or exploring the benefits of using the following GS1 Standards and business solutions:

- Global Trade Item Number® (GTIN®) for unique product identification
- Global Location Number (GLN) for unique party and location identification
Global Data Synchronization Network™ (GDSN®) and Global Data Model (GDM) for consistent descriptions of products

Electronic Data Interchange (EDI) and Electronic Product Code Information Services (EPCIS) for structured data capture and sharing internally and among trading partners.

Leveraging GS1 Standards provides consistency and interoperability across different environments and systems while meeting a wide variety of business needs. More than 96 organizations of the GS1 US retail grocery and foodservice industry initiatives, including leading manufacturers, distributors, retailers, foodservice operators, solution providers, and industry associations have worked together to analyze business processes and business requirements and consider how the standards can be applied to support requirements outlined in the Final Rule. The result of this effort is summarized in this guideline to help industry members apply the standards to their own business processes to support the requirements of the FSMA 204 Final Rule.

Important: As with all GS1 Standards and solutions, this guideline is voluntary, not mandatory. It should be noted that the use of the words "must" and "require" throughout this document relate exclusively to technical recommendations for the proper application of the standards to support the integrity of your implementation.

Each company is individually responsible for meeting all statutory and/or regulatory requirements for their company and their products. Consult with your company’s legal counsel or compliance team (regulatory or quality) for more specific information about current statutory and regulatory requirements applicable to your company and products.

Nothing herein should be construed as constituting or implying an agreement among foodservice and/or retail grocery companies to adopt or implement GS1 Standards. Nothing herein should be construed as constituting or implying an agreement regarding any company’s prices, output, markets, or dealings with customers and suppliers. Nothing herein is inconsistent with the proposition that each participating company must and will exercise its independent business judgment on all standards adoption.

1.4 Future Releases

This guideline presents the current insight within industry for how GS1 Standards can be applied to United States food supply chain business processes to support product and location identification, structured product descriptions, and recording common industry defined events. It may be updated to reflect feedback from industry pilots, updates to GS1 Standards, and other industry efforts that advance the level of thought. The content may be of assistance as a resource for understanding current thinking or as an aid for pilot preparation. The reader should be aware that changes may be made and should not expect any particular section of content to remain unchanged.

1.5 Scope

This guideline defines the recommendations for product and location identification, structured product descriptions, and recording common industry defined events to support the additional traceability records required in the Final Rule. It does not provide any guidance or advice regarding regulatory compliance. The Critical Tracking Events (CTEs) and Key Data Elements (KDEs) have been determined by the U.S. FDA and are intended to show the business steps and supply chain members responsible for capturing the KDEs required for the additional traceability records in the Final Rule. Federal requirements for traceability recordkeeping in the food supply chain are specified in the Additional Traceability Records for Certain Foods and any future U.S. FDA Guidance(s) they publish after this guideline is released.

This guideline reflects the current industry understanding of the Additional Traceability Records for Certain Foods. Those requirements, and the statutes and regulations affecting them, are subject to change and may evolve in a manner this guideline cannot anticipate.
1.6 Normative References

This implementation guideline is based on the GS1 General Specifications, and other GS1 Standards guidance listed below. The relevant provisions of these standards/specifications are to be considered provisions of this guideline:

1. Get started with GS1 Standards
2. GS1 US FSMA 204 Readiness Checklist
3. A Guide to GS1 Standards Adoption for Supply Chain Visibility
4. GS1 General Specifications
5. GS1 Attribute Definitions for Business Standard (ADB)
6. GS1 US Foodservice Booklet
7. GS1 US Standards in Use for Fresh Foods
8. EPCIS 2.0
9. Core Business Vocabulary (CBV) 2.0
10. GTIN Management Standard
11. GS1 GDSN 3.1 Trade Item Implementation Guide
12. Global Data Model Solution Standard
13. EDI 856 Foodservice Ship Notice Explained
14. GS1 US Supply Chain Visibility
15. EPC Tag Data Standard (TDS) 2.0
16. RFID Advantage Matrix
17. RFID Implementation Guideline
18. GS1 Data Matrix Guideline
19. 2D Overview in General Distribution
21. An Introduction to the SSCC
22. Food Industry Guidance for Streamlining Your Logistics Labels

23. To access the full ASN for Foodservice Guideline, you need to be a GS1 US Member company (such as when you license a Company prefix). Please follow the below steps to access the guideline. If you have questions on how to log in you can contact our member support team at info@gs1us.org.

 a. Login to myGS1 US
 b. Click on myGS1 US in the top menu
 c. Go to Member-Only EDI Documents
 d. Select Uniform Communication Standard (UCS) EDI
 i. Navigate to UCS Implementation Guideline 007050
 ii. Go to 2.2 Transaction Sets
 iii. Go to 856 UCS v7050 - Foodservice.pdf

Important: All section references to the GS1 General Specifications refer to Release 22.0. Section numbers may change with subsequent releases.
2 Overview of the FSMA 204 Final Rule

✔️ Important: Each company is individually responsible for meeting all statutory and/or regulatory requirements for their company and their products. This overview is meant to be a brief summary created by industry, and in no way a replacement for the U.S. FDA’s documentation linked in Section 1.1 History and Background this document.

2.1 The Food Traceability List (FTL)

To define which products are subject to the additional record-keeping requirements in the Final Rule, the U.S. FDA developed a list of foods called the Food Traceability List (FTL). The FTL applies to foods that contain ingredients that are on the FTL and are not subject to a kill step. A kill step is defined by the U.S. FDA as any lethality processing that significantly minimizes pathogens in a food. Food that goes through a kill step is not subject to the Final Rule unless otherwise specified. The current version of the FTL includes but is not limited to foods such as soft cheeses, fresh/cut produce, peanut butter, seafood, and ready-to-eat deli salads. Each organization should review the full list and determine what applies to its business operations.

The U.S. FDA indicated that the foods subject to the Final Rule requirements will evolve over time and the FTL will be updated periodically. This most current version of the FTL can be found on the U.S. FDA FSMA 204 website.

2.2 Product and Location Identification, Description, Traceability Lot Code, Traceability Lot Code Source, and Traceability Lot Code Source Reference

The Final Rule requires food products and locations, referenced in the CTE and KDEs, to be described with attributes that give a clear indication of the food or location referenced in the record. The U.S. FDA has noted that ambiguity in product and location identification has impeded the accuracy and response time of previous foodborne illness investigations.

2.2.1 Product and Location Descriptions

While most of the KDEs defined in the Final Rule describe what, when, and where, of the various CTEs, additional KDEs are required to round out the descriptions of food products and locations. For food products, the rule calls this group of additional KDEs the Product Description. It includes the brand name, product name, and packaging size/style. For locations, the Final Rule groups the KDEs under the name Location Description and includes attributes such as the name of the business, physical location, and street address.

2.2.2 The U.S. FDA Definition of Traceability Lot Code (TLC)

The Final Rule requires each item to have a product description and be assigned a Traceability Lot Code (TLC). Under Key Features of the U.S. FDA’s FSMA webpage, the TLC is defined as: “a descriptor, often alphanumeric, used to uniquely identify a traceability lot within the records of the firm that assigned the traceability lot code.

The U.S. FDA FSMA webpage further states, “The traceability lot code (TLC) is an integral component of the rule’s requirements. It links to the other KDEs required, including the TLC Source, which provides the physical location where the traceability lot code for an FTL food was assigned. Requiring documentation of traceability lot codes and traceability lot code sources enables U.S. FDA to identify the source of the food faster – by enabling U.S. FDA to skip steps in the supply chain, link a food to the firms that have handled it, and ultimately lead U.S. FDA back to the source of the food during an outbreak investigation.”

A “lot” is defined as a grouping of the food produced during a specific time at a single physical location and identified by a specific code. A lot may also be referred to as a batch or production run.
The U.S. FDA states that "You must assign a traceability lot code to a food on the Food Traceability List (FTL) when you do any of the following:

- initially pack a raw agricultural commodity (RAC) other than a food obtained from a fishing vessel;
- perform the first land-based receiving of a food obtained from a fishing vessel;
- or transform a food. (see U.S. FDAs FAQs section on Transformation for full definition)
- If you receive an FTL food from an entity that is exempt from the final rule, you must assign a TLC if one has not already been assigned (unless you are a retail food establishment or restaurant).
- Otherwise, you must not establish a new TLC when you conduct other activities (e.g., shipping) for a food on the Food Traceability List."

Once a food has been assigned a TLC, the records required at each CTE must include that TLC. All the KDEs including the TLC, must be linked to the relevant traceability lot.

The Final Rule requires the receiver to utilize previously assigned traceability lot codes (TLC) in their CTE/KDE records instead of utilizing a newly assigned internal reference. This means that companies further downstream in the supply chain will need to have processes in place for routinely receiving the TLC from their trading partners instead of depending solely on internal references.

2.2.2.1 Method for Assigning Traceability Lot Codes

In Final Rule response 324, the U.S. FDA does not define a particular method or system by which companies must assign traceability lot codes. It further mentions in comment response 324 that "several food industry-supported traceability initiatives offer best practices and standards for uniquely identifying a food using a combination of a globally unique product identifier, firm-assigned internal lot code, and standard date code. This information, taken together, could be used as a traceability lot code, provided it meets the definition of “traceability lot code” in § 1.1310 of the final rule."

Furthermore, in Final Rule response 361, the U.S. FDA states that "a traceability lot code may include a product identifier such as a Global Trade Item Number (GTIN) and/or an internal lot code, provided the definition of “traceability lot code” in § 1.1310 is met."

Section 3.2 provides information on how companies can use GS1 Standards to use a combination of a globally unique identifier with an internal lot code to meet the TLC requirements.

2.2.3 The U.S. FDA Definition of TLC Source and TLC Source Reference

The U.S. FDA FSMA 204 webpage states that "A traceability lot code source refers to the physical location where a food was assigned a traceability lot code. In certain situations, the Food Traceability Rule requires documentation of either the location description for the traceability lot code source, or the traceability lot code source reference.

Location description means key contact information for the location where a food is handled, specifically the business name, phone number, physical location address (or geographic coordinates), and city, State, and zip code for domestic locations and comparable information for foreign locations, including country. Therefore, the location description for a traceability lot code source would be this key contact information for the place where the food was assigned a traceability lot code."

A traceability lot code source reference means an alternative method for providing U.S. FDA with access to the location description for the traceability lot code source. Examples of a traceability lot code source reference include, but are not limited to, the U.S. FDA Food Facility Registration Number for the traceability lot code source or a web address that provides U.S. FDA with the location description for the traceability lot code source."

This guideline will detail how a GLN can be used in the transactional (EDI) and event (EPCIS) data to share the TLC Source Reference. For more information see Section 4.6.
For more information on this please access the U.S. FDA’s Traceability Lot Code webpage.

2.2.3.1 Method for Assigning and Sharing the Traceability Lot Code Source Reference

In response to the proposed rule, the U.S. FDA received comments expressing concern that passing forward a TLC Source would expose commercially sensitive information. In the Final Rule, the U.S. FDA proposed an alternative method for providing access to the U.S. FDA with the Location Description of the TLC Source. That is named the Traceability Lot Code Source Reference.

Based on the U.S. FDA’s definition mentioned above, it may be sufficient to provide a GLN identifying the TLC Source if the U.S. FDA has means of determining where to get the Location Description KDEs, such as accessing GS1 US Data Hub Location. The GLN data manager would need to share the GLN (or overall hierarchy) specifically with the U.S. FDA. This may be sufficient for companies looking to limit the exposure of commercially sensitive information.

The definition also mentions utilizing a web address to enable the ability to look up the Location Description for the TLC source. This could be enabled using GS1 Digital Link URI syntax in the EPCIS message.

Section 4.6: “CTEs and Mappings to GS1 EPCIS Standard” provides more details on this.

2.3 Records of Critical Tracking Events (CTEs) and Key Data Elements (KDE)

When companies/persons physically handle food products, the Final Rule identifies certain supply chain activities as CTEs, where records of KDEs are required to be captured and stored. The required KDEs vary from CTE to CTE but generally describe where the event took place, when the event took place, what products were involved, and provide ties to the records that substantiate the data.

As food progresses through the supply chain, it may undergo a variety of different processes to be changed, packaged/re-packaged, labeled/re-labeled, or combined with other ingredients. For this reason, the CTE and KDE framework is intended to be flexible to accommodate the variety in the food supply chain, but this means companies will need to determine which CTEs and KDEs apply to their specific situation.

2.4 Traceability Plan Requirements

The rule also requires companies to keep a traceability plan. This information can be found in eCFR Traceability Plan (§ 1.1315). The traceability plan must be updated as needed to ensure that the information reflects current practices for compliance with the rule. Companies must retain their previous traceability plans for two years after the plan is updated. U.S. FDA states, “The traceability plan must include the following:

- A description of the company’s procedures used to identify FTL foods they manufacture, process, pack, or hold.
- A description of how the company assigns traceability lot codes to FTL foods, if applicable.
- A statement identifying the point of contact for questions regarding the company’s traceability plan and records.
- If a company grows or raises a food on the FTL, it must keep a farm map showing the location and name of each field or container where food is grown or raised on the FTL. The map must include geocoordinates and any other information needed to identify the location of each field/growing area or container.”

2.5 Implementation Timeline, Record Retention, and Response Timing

The Final Rule, effective as of January 20, 2023, outlines various specifics, including the commencement of the rule, the designated duration for record retention, the timeframe for responding
to U.S. FDA requests, and the possibility of delegating record-keeping responsibilities. The Final Rule establishes January 20, 2026, as the compliance date applicable to all entities subject to the rule. This is the starting date that records must be retained for the specified period. The U.S. FDA states that the required records be available to an authorized U.S. FDA representative, upon request, within 24 hours (or within some reasonable time to which U.S. FDA has agreed), along with any information needed to understand these records. If the U.S. FDA’s request for information is made by phone, they indicate that the request will also be provided in writing upon request. However, the requested information must be provided within 24 hours (or within some reasonable time to which the U.S. FDA has agreed) of the phone request. There is no requirement for the records to be maintained in electronic form, although it is encouraged. Records are not required to be stored on-site as long as they are retrievable in the necessary time, at a minimum through an electronic spreadsheet.

U.S. FDA also requires that persons subject to the rule maintain records containing the information required for 2 years from the date they were created. For more information, see Record Retention in the Final Rule.

While the rule expects each location that physically handles products on the FTL to be primarily responsible for record-keeping, it also acknowledges that in some situations that responsibility may be delegated to another entity. In these cases, records must be retrieved and provided onsite within 24 hours of the request for official review. Please review the appropriate section of the Final Rule for complete information on Records Maintenance and Availability.

2.6 What Foods and Persons are Exempt from the Final Rule?

The Final Rule specifies details about foods and persons who are exempt from the additional recordkeeping or the sortable electronic spreadsheet. Companies should review the exemptions outlined in the Final Rule Subpart S – Additional Traceability Records for Certain Foods in detail to verify if they are subject to the requirements. The U.S. FDA also published the Traceability Exemptions Flow Chart for companies to use to help determine if they are exempt.
3 Overview of GS1 Standards

In the Final Rule responses 506 and 516, the U.S. FDA encourages "the use of any tools that will improve a firm’s procedures for traceability and support the maintenance and sharing of the required traceability records under the final rule."

GS1 Standards lay the foundation for a more visible supply chain, and in situations such as traceability and recalls, time is of the essence. With GS1 Standards in place, affected items may be more quickly identified and removed with minimal impact on regular business operations. This level of visibility helps to create greater efficiency and resilience as well as the ability to pivot when supply chain disruptions occur.

Figure 3-1 Assigning GTINs, GLNs, and SSCCs

The figure above illustrates how GLNs, GTINs, and SSCCs are assigned to products, locations, and logistics units by the different supply chain stakeholders, to be used and recognized throughout the supply chain.

- Traceability starts with the unique identification of products: Global Trade Item Numbers (GTINs) and parties/locations: Global Location Numbers (GLNs).
- Additionally, at the item, case, or pallet level, companies may be capturing information via a GS1 data carrier such as barcodes and then sharing that information with standardized data structures such as EDI and EPCIS.
By implementing standards-based traceability, companies are better prepared to identify, locate, and remove a product that is a public health concern.

Figure 3-2 The Three Categories of GS1 Standards

3.1 Identify

The GS1 System of Standards provides for the use of unambiguous identification keys to identify goods, services, assets, locations, etc. worldwide. These keys can be represented in data carriers, such as barcodes or EPC/RFID tags, to enable automatic data capture. They may also be used in electronic communications, improving speed and accuracy when sharing master data, transactional data, and visibility event data.

This guidance will illustrate how some of the GS1 identification keys apply to food traceability even if not required by the Final Rule. In later sections, this guideline will illustrate how GS1 Standards for data capturing and sharing work together with GS1 identification keys to reliably communicate data with trading partners and other stakeholders, such as the U.S. FDA.

3.1.1 The Importance of Using GS1 Identification Keys for Traceability

A crucial aim of the U.S. FDA’s Final Rule is distinguishing affected products and locations from unaffected ones during a food safety investigation. Being unable to identify products in scope for a food safety investigation prevents officials from making an ultimate determination of the root causes of an outbreak and taking action. To alleviate this, the U.S. FDA has required companies subject to the rule to describe the products through a handful of descriptive attributes and descriptions of physical locations.

Additionally, in the comment section of the Final Rule, response 507, U.S. FDA acknowledges the use of globally unique identifiers as a helpful tool for improving traceability, saying, “We recognize that the use of globally unique product identifiers can be a helpful tool for improving traceability, and firms may wish to use them in establishing required traceability lot codes, including by encoding and attaching them as described in the comments. However, we are not making this a requirement under the final rule. We recognize that while some firms and systems may use these specific standards, not all firms and...
systems maintain and provide information in this way, and we want to allow sufficient flexibility for firms to maintain and provide the required KDEs based on their preferred systems.

Figure 3-3 Globally Unique Identification Keys in the GS1 System of Standards

![Globally Unique Identification Keys in the GS1 System of Standards](image)

3.1.2 Unique Identification of Products – Global Trade Item Numbers (GTINs)

3.1.2.1 GTIN Definition

The GTIN is the globally unique GS1 Identification Key used to identify trade items and one of the main building blocks of the GS1 System of Standards. GTINs are assigned by the product’s brand owner and are used to identify products as they move through the global supply chain. GTINs can be 8, 12, 13, or 14 digits.

NOTE: A trade item is any product or service that may be priced, ordered, or invoiced at any point in the supply chain. Trade items include individual items as well as all other packaging configurations offered for sale (e.g., two-pack, case, pallet, etc.). Each packaging level is identified by a unique GTIN. For example, a brand might use a different GTIN to uniquely identify an each, pack, and a case along with any other product configurations that will move through the supply chain.

A GTIN is assigned by the brand owner using a GS1 Company Prefix which can be licensed from a GS1 Member Organization, such as GS1 US. More information on obtaining a GS1 Company Prefix or a single GTIN from GS1 US can be found on the GS1 US website at https://www.gs1us.org/.

3.1.2.2 GTIN Structure Example

A GTIN-14, or GTIN in a 14-digit format, is commonly used to identify cases in general distribution and can be included in data carriers such as GS1-128 barcodes to enable traceability.

Figure 3-4 Components of the GTIN-14

![Components of the GTIN-14](image)
- **An indicator Digit** from 1-8 for fixed measure trade items and 9 for variable measure trade items. Note, if using a GTIN-12 two leading zeros would be placed in front of the GTIN instead of an indicator digit.

- **GS1 Company Prefix**: A globally unique number licensed to a company by a GS1 Member Organization to serve as the foundation for generating GS1 identification keys (e.g., GLN, GTIN). GS1 Company Prefixes are assigned in varying lengths depending on the company’s identification needs.

- **Item Reference**: A number, containing no logic, assigned by the user to identify the item. The item reference varies in length based on GS1 Company Prefix length.

- **Check Digit**: The final digit is calculated from the preceding digits of the GTIN. This digit is used to check that the data has been correctly composed. GS1 US provides a check digit calculator to automatically calculate check digits for you.

For more information on GTINs please reference: *An Introduction to the Global Trade Item Number (GTIN)*

3.1.2.3 Where are GTINs Used?

GTINs are used anywhere that a product or service needs to be identified along the supply chain. This includes the Internet, business transactions, IT systems, physical products, and more. GS1 Standards define how to format and structure the GTIN in a wide variety of applications so that the same GTIN can be used to identify the product as it flows through the supply chain.

Figure 3-5 Use of GTINs in the Supply Chain

3.1.2.4 FSMA 204 GTIN Application

While, in Final Rule *response 508*, the U.S. FDA does not require product identification by a GTIN, it does note that companies who use the GTIN for unique identification might already be linking to several of the required KDEs such as elements of the product description. These KDEs may be linked to a GTIN in a database and entities who use this practice, would not need to maintain this information separately.
3.1.3 Unique Identification of Locations – Global Location Numbers (GLNs)

3.1.3.1 GLN Definition

The GLN is a globally unique GS1 Identification Key used to identify parties and locations. The GLN allows users to answer the questions “who” and “where” within their organization and throughout the entire, global supply chain.

- **A party** is an entity that needs to be represented in a business-related transaction. A GLN identifying a party answers the question of “who” is involved. This may be a legal entity or function within an entity.

- **A location** is a particular place or position. A GLN identifying a location is used to answer the question of “where” something has been, is, or will be and can be physical or digital. A physical location is a tangible place that may be represented by an address, coordinates, or other means. A digital location is an electronic (non-physical address) such as an Electronic Data Interchange (EDI) gateway or enterprise resource planning (ERP) system.

3.1.3.1.1 Where are GLNs Used?

GLNs may be used anywhere that a party or location needs to be identified throughout the supply chain. This includes in business transactions, IT systems, a physical location itself, and more. GS1 Standards define how to format and use the GLN in a wide variety of applications so that the same GLN can be used to identify the party or location for any of those needs.

Products in the food supply chain pass through many different physical locations such as farms, packing houses, cold storage facilities, manufacturing plants, distribution centers, stores, restaurants, etc. Effective traceability relies on distinguishing these various locations and retrieving necessary information about them. Within the GS1 System of Standards, GLNs can be assigned to each party, physical location, and sub-locations (that could be in the same facility) companies own and/or interact with throughout the supply chain.

Some companies have limited identification needs and may not have the need to assign multiple GLNs. In these scenarios, they can successfully utilize a single GLN to identify one legal entity, function, physical location, and/or digital location simultaneously. Companies using this method of GLN allocation may experience issues when scaling due to business needs or trying to meet more complex use case requirements. For more information on single use GLNs, please see the GS1 resource, *Determine How to Assign GLNs*.

3.1.3.1.2 GLN Structure

A GLN can be constructed utilizing the same GS1 Company Prefix that is licensed to construct GTINs or the GS1 Company Prefix can be obtained just for the purpose of assigning a GLN for those companies that don't need to assign GTINs. The number of GLNs that can be created is based on the length of the GS1 Company Prefix just like the creation of a GTIN.

The GLN is a 13-digit number that includes three components:

Figure 3-6 Components of a GLN
- **GS1 Company Prefix:** A globally unique number licensed to a company by a GS1 Member Organization to serve as the foundation for generating GS1 identification keys (e.g., GLN, GTIN). GS1 Company Prefixes are assigned in varying lengths depending on the company’s identification needs.

- **Location Reference:** A number, containing no logic, assigned by the user to identify the party or location. The Location Reference varies in length based on GS1 Company Prefix length.

- **Check Digit:** The final digit is calculated from the preceding digits of the GLN. This digit is used to check that the data has been correctly composed. GS1 US provides a check digit calculator to automatically calculate check digits for you.

More information on GLNs can be found on the GS1 US website and in An Introduction to Global Location Number.

3.1.3.1.3 FSMA 204 GLN Application

With the exception of farms, in which sub-locations such as individual fields, growing areas, or aquaculture containers on each farm are in scope, the Final Rule primarily focuses on locations as places at different street addresses, not sub-locations. However, in Final Rule Response 267, the U.S. FDA states, "businesses that use location identifiers, to differentiate between intracompany locations (e.g., store numbers), may choose to include that information as part of their location description. This could be done either by adding it to the required information or by using it as a shorthand for some or all of the required information, provided that a glossary or key is maintained (and, if necessary, shared) to indicate the complete physical address and other required information relating to the specific location.”

As mentioned in Section 2 of this Guideline, the Final Rule permits companies to provide a Traceability Lot Code (TLC) Source Reference, which is an alternative method for providing information about the TLC Source to the U.S. FDA. An example of a TLC Source Reference could be a web address that provides the location description for the TLC Source. The U.S. FDA FSMA 204 FAQs state, “To protect the confidentiality of business information, a shipper could choose to provide its customers with the TLC source description, instead of directly identifying the location description of the TLC source of an FTL food they handle.” For this reason, this guideline will illustrate how GLNs can be applied and used to link to descriptive attributes about a location for fulfilling the traceability required by the U.S. FDA's Final Rule.

3.1.4 Unique Identification of Logistics Units – Serial Shipping Container Code (SSCC)

3.1.4.1 SSCC Definition

The Serial Shipping Container Code (SSCC) is the GS1 Identification Key used to identify a logistic unit.

3.1.4.2 Where are SSCCs Used?

The SSCC identifies a single logistic unit throughout its transport journey. Like a parcel tracking number, it acts as a single reference for the unit over its journey from source to destination. The SSCC can be encoded in a data carrier and placed directly on the unit’s logistics label to be a physical representation of the identity of the object. The SSCC can be expressed in data records (e.g., Advance Ship Notice (ASN)), exchanged between trading partners and shipping/receiving locations to provide a complete context on the unit. This enables companies to efficiently load/unload shipments without sacrificing accurate records about individual products’ journeys.
3.1.4.3 SSCC Structure

The SSCC can be constructed from the same prefixes utilized to construct GTINs and GLNs and does not limit the number of products and locations that can be allocated by any single prefix.

The SSCC’s 18-digit number includes five components:

![Components of a SSCC](image)

- **Application Identifier (AI):** AI (00) to indicate an SSCC.
- **Extension Digit:** Used to increase the capacity of the Serial Reference within the SSCC.
- **GS1 Company Prefix:** A globally unique number licensed to a company by a GS1 Member Organization to serve as the foundation for generating GS1 identification keys (e.g., GLN, GTIN, SSCC). GS1 Company Prefixes are assigned in varying lengths depending on the company’s identification needs.
- **Serial Reference:** A number, containing no logic allocated by the party composing the logistic unit to identify a logistic unit.
- **Check Digit:** This digit is used to check that the data has been correctly composed. GS1 US provides a check digit calculator to automatically calculate check digits for you.

For more information on SSCCs please reference *An Introduction to the Serial Shipping Container Code (SSCC)* and Section 5 in this document.

3.1.4.4 FSMA 204 SSCC Application

While SSCCs are not required, the U.S. FDA acknowledges that they can be a helpful tool for improving traceability, and companies may wish to use them together with the required traceability lot codes. For more information in the Final Rule, see Response 516.

For example, a retail store might order several different kinds of products to be delivered together on the same truck. The retail distribution center will select the different food products that were ordered and pack them together into a mixed pallet for rapid loading/unloading of the truck. Objects, such as cases, placed together for transport and/or storage can be referred to as logistics units and can be identified by an SSCC.
3.1.5 The Traceability Lot Code in the GS1 System of Standards

3.1.5.1 GTIN Plus Batch/Lot in the GS1 System of Standards

Throughout the world, many trade items are identified with GTINs. Once a company has assigned a GTIN to a trade item, it provides a common language for all its entities and trading partners worldwide to uniquely identify the item. The GTIN can be used to identify types of products at any packaging level (e.g., consumer unit, inner pack, case, pallet).

Today, many companies assign batch/lot codes to groups of trade items with similar usage characteristics and production batches (e.g., production date, production batch, expiration date). Batch/lot numbers allow for greater granularity when tracking specific groups of items throughout the supply chain.

Within the GS1 System of Standards, batch/lot information is considered attribute information and must be accompanied in data carriers and data sharing mechanisms by a GTIN. GS1 Application Identifiers (AI) are used to indicate GS1 identification keys, attribute information, and secondary information in data carriers and data sharing mechanisms.

3.1.5.2 FSMA 204 GTIN Plus Batch/Lot Application

As referenced in Section 2, in the Final Rule response 361, the U.S. FDA states "traceability lot code may include a product identifier such as a GTIN and/or an internal lot code (provided the definition of “traceability lot code” in §1.1310 is met.” Therefore, a GTIN+batch/lot is one example of a traceability lot code that could be used to support the Final Rule’s requirement in section §1.1310.

The batch/lot attribute in the GS1 System is indicated by AI (10) and is considered an attribute identifier. Attribute identifiers cannot be expressed without a primary identifier. Within the GS1 System, AI (10) must be expressed in conjunction with the GTIN since a batch/lot number is an attribute of a product.

For this reason, this guidance will define the TLC as both a GTIN (AI (01)) and a batch/lot (AI (10)).

Note: the batch/lot attribute in the GS1 System is indicated by AI (10) and is considered an attribute identifier. AI (10) can be recorded as any number of characters from one to twenty and be expressed as letters, numerals, and a defined subset of special characters. Attribute identifiers cannot be expressed without a primary identifier. Within the GS1 System, AI (10) must be expressed in conjunction with the GTIN since a batch/lot number is an attribute of a product. More information can be found in section 3 of the GS1 General Specifications.

3.2 Capture

GS1 data capture standards currently include barcode and radio-frequency identification (RFID) data carriers which allow GS1 Identification Keys and secondary data to be affixed directly to a physical object. This allows for the means to automatically capture data that is carried on physical objects, bridging the world of physical objects and the world of electronic information. Depending on the barcode format, they can be used to encode information such as product and shipment identifiers as well as other data such as serial numbers, batch/lot numbers, and dates. Barcodes and RFID tags play a key role in supply chains, enabling industry to automatically identify and track products as they move through the supply chain.

3.2.1 More on Application Identifiers (AIs)

In the GS1 System of Standards, GS1 Application Identifiers (AIs) are a finite set of specialized identifiers encoded within barcodes to indicate the type of data represented in the various barcode segments. Each AI is a two-, three-, or four-digit numeric code. (When rendered in human-readable
In the GS1 System, AI (13) indicates a packaging date. Although it is intended to be used as such, PTI uses AI (13) on produce labels for both pack and harvest date instead of AI (7007) for harvest date. Please see the PTI website or more information.
These AIs are generally seen on a GS1 Logistics Label. Other initiatives call out certain dates for their specific categories (point to PTI, NFI)

<table>
<thead>
<tr>
<th>NAME</th>
<th>AI</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Shipping Container Code (SSCC)</td>
<td>00</td>
<td>Uniquely identifies a logistic unit.</td>
</tr>
<tr>
<td>Trade Items Contained in Logistic Unit</td>
<td>02</td>
<td>Indicates the GTIN of the trade items contained in the logistic unit and is used in combination with SSCC (00) and count of trade item pieces (37).</td>
</tr>
<tr>
<td>Count of Trade Item Pieces Contained in a Logistic Unit</td>
<td>37</td>
<td>Indicates the number of products or number of product pieces contained in the respective logistic unit. Used in combination with AI (00) and (02).</td>
</tr>
<tr>
<td>Global Location Number (GLN) of the Production or Service Location</td>
<td>416</td>
<td>Indicates where something was produced or serviced.</td>
</tr>
</tbody>
</table>

3.2.2 Guidance on Data Carrier Usage

While the Final Rule does not require the use of data carriers, in response 524, U.S. FDA states that "firms may use product labels to provide the information required to their supply chain partners if that suits their business practices". GS1 Data Carriers provide machine-readable representations of GS1 Identification Numbers to facilitate automatic identification and data capture. Data carriers are used by businesses to enable faster, more accurate data capture and traceability in addition to allowing information about a physical object to be captured, shared, and used.

As companies investigate ways to make their processes more efficient and enable seamless communication and integration between trading partners as the product moves throughout the supply chain, they can choose to adopt one or more data carriers. Pallets, cases, inner packs, and individual items, if priced, invoiced, or ordered, at any point in the supply chain, can be assigned a GTIN, marked with a data carrier that encodes that GTIN (examples of this can be barcodes, RFID tags, etc.), then scanned or read by an RFID reader. That information can then be stored and shared as appropriate with supply chain partners or externally.

Please note, that the scope of the Final Rule excludes sales or service to consumers, meaning scanning at the point-of-sale or consumption is not in focus for the regulation, but may be relevant for other business purposes of the readers of this guidance. Companies should always discuss the use of data carriers with their trading partners to align appropriately.

Most of the CTEs and KDEs (except Harvest and Cooling) outlined in the Final Rule are required to be linked to the TLC of the products under examination. As will be discussed later, this maps closely to AI (10) for GTIN with batch/lot number encoded as AI (10). See Final Rule Response 423 for more information.

For additional resources on data carriers, please reference Section 3.3.3 of this guideline.

The following sub-sections will detail some of the top considerations for companies evaluating the use of data carriers in support of traceability for the Final Rule. They cover which data can be encoded, the syntaxes that can be used to encode that data, and the different kinds of data carriers available in the GS1 System of Standards.

3.2.2.1 FSMA 204 Data Carrier Application

The Final Rule focuses on records that the U.S. FDA will request of companies in the event of an investigation, not on the practices a company needs to have in place to routinely implement traceability between trading partners. Data Carriers are not required to meet the requirements of the Final Rule.
For this reason, there is no clear guidance for what data must be present in a data carrier to fulfill traceability for the Final Rule. Instead, companies must evaluate what data will enable rapid access to the necessary information in the event the U.S. FDA requests their records.

3.2.2.2 Data Carrier Syntax Overview

NOTE: Members of the GS1 US retail grocery and foodservice industry initiatives who developed this guideline for FSMA 204 agree that best practice is to include, at a minimum, the GTIN, date, and batch/lot in the data carrier.

Different types of data carriers can hold varying amounts of data. In addition to that, the data itself is structured to enable specific capabilities. This data formatting, known as the syntax, is an important consideration point when determining what type of data carrier is best suited to support the business requirements. The three barcode syntaxes in the GS1 System of Standards are plain, GS1 element string, and GS1 Digital Link URI while Electronic Product Code (EPC) is the syntax used for RFID.

Table 3-3 GS1 Barcode Syntax Comparison Table

<table>
<thead>
<tr>
<th>Data Carriers</th>
<th>Best For</th>
<th>PLAIN (1D)</th>
<th>GS1 ELEMENT STRING (1D AND 2D)</th>
<th>GS1 DIGITAL LINK URI (2D)</th>
<th>EPC URI (RAIN RFID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAN/UPC and ITF-14</td>
<td>Use cases that only require a GTIN</td>
<td>Contains only the primary identifier</td>
<td>Can contain the primary identifier plus attribute data</td>
<td>Can contain the primary identifier with a serial number plus attribute data for use in RFID tags.</td>
<td></td>
</tr>
<tr>
<td>GS1-128 and GS1 DataMatrix</td>
<td>Use cases that require GTIN and additional information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QR Code and Data Matrix</td>
<td>Use cases that benefit from connecting users to an online resource</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFID tag, likely combined with compatible barcode</td>
<td>Use cases that require data capture without a line of sight (RFID only). Use cases that benefit from item level serialization.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syntax Example (GTIN, Expiration Date, Batch/Lot Number)</td>
<td>00614141999996</td>
<td>(01)00614141999996</td>
<td>https://example.com/01/00614141999996/10/123456?17=280115</td>
<td>(01)00614141999996</td>
<td>(01)00614141999996</td>
</tr>
<tr>
<td></td>
<td>(17)280115</td>
<td></td>
<td></td>
<td>(17)280115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10)123456</td>
<td></td>
<td></td>
<td>(10)123456</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(21)1212112</td>
<td></td>
</tr>
</tbody>
</table>

Serial number must be in RFID encodings for compliance with GS1 Standards
3.2.3 Barcode Types and Uses

3.2.3.1 1D Barcodes

Figure 3-9 ITF-14 Barcode

![ITF-14 Barcode](image)

00614141999996

ITF-14 barcodes are often used in general distribution because they can be directly printed on corrugate. This type of barcode works best for use cases where only the GTIN is required as this is the only data that can be encoded in an ITF-14 barcode.

GS1-128 barcodes can encode the GTIN and additional attribute data, such as expiration date, batch/lot number, GLN, SSCC, etc. This type of barcode can be up to 6.5 inches in length and hold up to 48 data characters.
3.2.3.2 2D Barcodes

GS1 DataMatrix uses GS1 element string syntax that is seen in other GS1 barcodes, such as the GS1-128. This data format is heavily used throughout the supply chain to support getting important data where it is needed in healthcare, with fresh foods, on logistic units, and in a variety of other places. It does not offer the web compatibility associated with the QR Code and Data Matrix used with GS1 Digital Link URI.

2D barcodes with GS1 Digital Link URI encode GS1 data in a web-friendly format that allows information to be used for traditional supply chain applications, while also connecting to online resources. This allows GS1 Digital Link in the QR Code and the Data Matrix to combine GS1 identifiers with the benefits of the web as shown in Figure 3-12.

Data Matrix with GS1 Digital Link URI can also be used to connect users to the web, however, not all mobile device cameras can automatically process the barcode type at this time.
A QR Code with GS1 Digital Link URI is the current preference for engagement through mobile devices because the default camera application on a mobile device can automatically scan the QR Code and connect the user to a website or other resource.

Important: 1D barcodes cannot be removed until all stakeholders expected to scan the barcode are fully capable of interacting with 2D barcodes. This means that both a 1D and 2D barcode would be required during any transition period.

3.2.4 RFID

There has been an increased interest in the food industry for RFID. Several pilots are developing to demonstrate its applicability, specifically in the following areas:

- **Traceability**
 - Quickly find pallets or cartons meeting specific criteria

- **Operational Efficiencies**
 - Automatically trigger alerts
 - Detect and prevent freshness rotation issues

The main benefit of RFID is the ability to capture information quickly and accurately with no line of sight needed. Data in RFID tags are read through RFID readers, which come in a variety of formats, including fixed (overhead, door portals) and hand-held. Please refer to the GS1 US RFID Foodservice Implementation Guideline.

3.3 Share

Electronic data sharing has many benefits, including reducing communication errors, increasing the speed of trade transactions, and supporting real-time product information updates. Within the GS1 System of Standards, there are three main ways to share: Electronic Data Interchange (EDI), The Global Data Synchronization Network™ (GDSN®), and Electronic Product Code Information Services (EPCIS). There are also global data sharing models such as the [Global Data Model (GDM)](https://www.gs1.org/gdm/) and the [Global Location Number (GLN) Data Model](https://www.gs1.org/gln-data-model) that establish standardized attributes to be shared around the world. For more information on GS1 Data Sharing Standards please reference the GS1 US webpage titled, [Share Information Electronically](https://www.gs1.org/share).

3.3.1 FSMA 204 Data Sharing Application

In Final Rule *[response 504](https://www.govinfo.gov/content/pkg/FR-2021-01-29/pdf/2021-01226.pdf)*, the U.S. FDA encourages companies to use available technologies to share information with supply chain partners. However, it does not require the use of electronic records, nor does it prescribe any specific technologies for records maintenance or sharing. Therefore, companies may use any system or standards that help them meet the requirements to keep and provide information that is required by the Final Rule.
One of the core elements of the U.S. FDA’s *New Era of Food Safety Blueprint* focuses on leveraging technology and other tools to create a safer, and more digital, traceable food system. Tech-enabled traceability and the use of smarter food safety tools help to prevent outbreaks and allow for faster outbreak responses, thus protecting consumers from contaminated products. Within the Blueprint, the U.S. FDA mentions that the first phase of enhancing traceability will be releasing FSMA Section 204 to harmonize the KDEs and CTEs needed for enhanced traceability. In the *New Era of Food Safety Blueprint*, the U.S. FDA recognizes that "establishing this foundation for traceability will allow stakeholders in the supply chain to adopt and leverage digitally-enabled technologies, enable data sharing, and introduce approaches that greatly reduce the time it takes to identify the origin of a contaminated food tied to a recall and/or outbreak."

3.3.2 Master Data, Transaction Data, and Visibility Event Data Differences

In the GS1 system of “share” standards, there is a noted separation of what is considered master data, transaction data, and visibility/event data, and how that data is shared between trading partners.

Master data are descriptive data elements of an entity that are static or nearly so. For a trade item class, for example, master data might include the trade item’s dimensions, descriptive text, nutritional information in the case of a food product, and so on. For a legal entity, master data might include the name of the organization, its postal address, geographic coordinates, contact information, and so on. This type of data is separate from transaction and visibility event data, which subsequently are also managed and shared by different standards and systems.

Where transaction data confirm legal or financial interactions between trading partners, visibility event data confirm the carrying out of a physical process or a comparable digital process.

In different situations, it is possible for both transaction and visibility event data to be generated, as well as only one or the other. For example, in the case of shipping products from a loading dock, an Advanced Shipment Notice can be generated to provide a sender’s intent to deliver products to a downstream receiver, and one or more visibility events can be captured as observing those products in the physical shipping processes.

For other scenarios, such as inventory counting or moving products from a stockroom to a sales floor, there would be no business transaction information associated with these processes. Conversely, in a process such as sending a message regarding the intent to purchase products, a set of transaction data would be produced, but no visibility event data.³

3.3.3 Master Data

Master Data is the core information about the "who" and "what" in a business relationship. The "who" can include the name, address, and identification codes of the buyer and seller plus details of shipping, delivery, and billing locations. The "what" is product information such as product name, description, size, and unique product identifier, such as the GTIN.

3.3.3.1 Global Data Synchronization Network (GDSN)

GDSN is the electronic transfer of standardized product information between trading partners and the continuous synchronization of that information over time. The GDSN helps to support all partners in having access to the same, accurate information. It includes product master data, which includes product attributes such as weight, description, brand name, product information, GTIN, and manufacturer information. GS1 GDSN makes it possible for any company, in any market, to share product information between trading partners within a closed network via a Certified Data Pool. Businesses can optimize their processes by sharing product content with multiple trading partners simultaneously within local and global markets and then can pass on product information to consumers and patients. For more information go to: https://www.gs1.org/standards/gdsn

Figure 3-15 The Global Data Synchronization Network

3.3.3.1.1 FSMA 204 GDSN Application

Supply Chain Trading Partners in the Retail Grocery and Foodservice industries in the USA and other countries transacting with the USA, need a simple, clear, and accurate way to notify each other when a product is in scope for the FSMA 204 regulation. They need to include a new GDSN code value to specifically indicate if a product (GTIN) is part of the FSMA FTL (Food Traceability List) or has an ingredient that is part of the FSMA FTL.

Examples of establishments that are mandated to keep and/or share these traceability records in the USA include but are not limited to grocery stores, restaurants, online food retailers, and meal kit delivery companies.

This code value will be used to trigger the collection and maintenance of additional traceability documentation to be compliant with the U.S. FDA FSMA 204 regulation.

Two GDSN attributes can be used to identify the products that are part of the FTL and communicate them to trading partners.

- The first attribute name is RegulationTypeCode = TRACEABILITY_REGULATION
The code value will be used for regulatory applicable product GTIN being published at any hierarchy level.

- NOTE: This code value will not be required for any pre-defined food categories.

The second attribute is to be used in conjunction with the US Local Code Value for regulatoryAct
(BMS ID 3071) = FSMA204

- The free form field regulatoryAct can keep the flexibility to be utilized for other regulations and to also be available for the US LCL approved code value of FSMA204.
- Data pool providers can implement validation rules for their customers to ensure data accuracy in this field.
- For more information on this Local Code Value please go to: https://www.gs1.org/standards/gdsn/3-x
- Scroll down to the United States of America and click on Regulatory Act

Figure 3-16 Local Code Value for FSMA 204

3.3.3.2 Global Data Model (GDM)

The GS1 Global Data Model (GDM) and Attribute Definitions for Business (ADB) standards (Global Master Data Attributes) help enable greater data quality within the GS1 Global Data Synchronization Network (GS1 GDSN). The GS1 Global Data Model Standard defines a globally consistent set of foundational product attributes needed to list, order, store, move, and sell products.

3.3.3.3 The Global Location Number (GLN) Data Model

The GLN Data Model Solution Standard is designed to share party data. It provides a robust, extensible set of attributes to give meaning to the party or location being identified and to help enable interoperable business solutions.

The GS1 Global Data Model provides standards to support sharing quality product data within solutions like the GDSN while the GLN Data Model provides ways to share party and location data across systems. The Location Description KDEs Section of this document describes how the GLN Data Model can be leveraged to help meet FSMA 204 requirements.
3.3.3.4 GS1 US Data Hub | Location

Locally and globally, GS1 is enhancing existing registry systems and creating new ones to share core party and location attributes. GS1 US offers a solution to help industry keep track of valuable data that is key to business processes through the GS1 US Data Hub. GS1 US Data Hub is not considered a GS1 Standard but rather is a suite of tools that allows users to create and keep track of Global Trade Item Numbers (GTINs) and Global Location Numbers (GLNs). This robust tool also provides the ability to add important attributes to those identifiers, manage and store the information, and share it with business partners. Data Hub Location could help companies meet the requirement for the Traceability Lot Code Source repository.

The GS1 US Data Hub | Location tool helps drive reliable party and location identification to improve business efficiencies. Additionally, GS1 US Data Hub | Location allows users to search for and view GLNs from many other GS1 Member Organizations. The tool is integrated into GS1’s Global Registry Platform, which allows GLNs from other GS1 Member Organizations, such as GS1 France and GS1 Germany, to be accessed from GS1 US Data Hub. For more please visit: https://www.gs1us.org/tools/gs1-us-data-hub/location.

3.3.4 Transactional Data

Transactional Data is the information exchanged between two organizations about the products and services they are selling, ordering, delivering, receiving, invoicing, and paying for. This process is also known as the Order-to-Cash cycle.

3.3.4.1 Electronic Data Interchange (EDI)

EDI enables the computer-to-computer exchange of business documents, such as purchase orders, advance ship notices (ASN), and invoices, between companies using a standard format, regardless of the kind of computer or software each company is using. EDI has helped many companies achieve significant operational savings through process improvements to common business operations, such as order, delivery, invoice, payment, warehouse, and inventory processes. When these documents are exchanged as EDI transactions, they often reference products, logistics units, locations, and parties. These references simply utilize a GS1 Identification Key instead of full descriptions. This is possible since these companies have previously exchanged data elements (i.e., attributes) that make up the full description.

For more information, please see the GS1 EDI Standard and GS1 educational offerings on EDI.

For more information on EDI go to: https://www.gs1us.org/upcs-barcodes-prefixes/how-to-use-your-upc-barcodes/share-information-electronically
3.3.5 Visibility Event Data

Visibility Event Data is the information generated by an item as it moves through the supply chain. Visibility Event Data Capture and Sharing is facilitated by the Electronic Product Code Information Services (EPCIS).

3.3.5.1 GS1 Electronic Product Code Information Services (EPCIS)

EPCIS is a GS1 Standard that enables trading partners to capture and share information about the physical movement and status of products as they travel throughout the supply chain—not only within and between locations in a single enterprise, but also between trading partners and ultimately to consumers. This visibility data is aimed at providing all parties involved with the creation, management, and transfer of products an interoperable representation of supply chain events as they occur.

Figure 3-18 Visibility Data with EPCIS

Image Source: https://ref.gs1.org/guidelines/epcis-cbv/2.0.0/

Every EPCIS event contains a representative and standard set of details about the dimensions of a real-world event in the supply chain. These include "What" objects were involved (trade items, logistic units, etc.), "Where" did the event take place and where are the objects last known to be, "When" did the event take place, and "Why" did the event happen (business process such as receiving, object(s) status, linked transactions, source/destination locations or parties).

An example of an EPCIS event in table format documenting a supply chain event is provided below. In this example, products identified by a GTIN + Lot identifier are received at a specific location and time, with source, destination, and linked transaction information also provided.
Table 3-4 EPCIS Event in Table Format Documenting a Supply Chain Event

<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>DATA ELEMENT</th>
<th>CONTENTS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>EPC Quantity List</td>
<td>GTIN + Lot, Quantity, Unit of Measure</td>
<td>Identifies what products were received and how much</td>
</tr>
<tr>
<td>WHEN</td>
<td>Event Time</td>
<td>UTC Time</td>
<td>The moment in time when the product was received</td>
</tr>
<tr>
<td></td>
<td>Event Time Zone Offset</td>
<td>Time Zone Offset Value (−05:00 as an example)</td>
<td>Local time zone in relation to UTC</td>
</tr>
<tr>
<td>WHERE</td>
<td>Read Point</td>
<td>GLN</td>
<td>The place where the product was received</td>
</tr>
<tr>
<td></td>
<td>Business Location</td>
<td>GLN</td>
<td>The place where the product is expected to be following the event</td>
</tr>
<tr>
<td>WHY</td>
<td>Business Step</td>
<td>Receiving</td>
<td>A standard identifier defined in CBV to indicate this is a receiving business step</td>
</tr>
<tr>
<td></td>
<td>Disposition</td>
<td>In Progress</td>
<td>A standard identifier defined in CBV to indicate the product is moving normally through the forward supply chain</td>
</tr>
<tr>
<td></td>
<td>Business Transaction List</td>
<td>A list containing business transaction references (ASN, Purchase Orders, etc.)</td>
<td>Standard identifiers are defined in CBV to identify business transaction types.</td>
</tr>
<tr>
<td></td>
<td>Source List</td>
<td>GLN</td>
<td>Used to identify locations and/or parties where transferred goods came from</td>
</tr>
<tr>
<td></td>
<td>Destination List</td>
<td>GLN</td>
<td>Used to identify locations and/or parties transferred goods went to</td>
</tr>
</tbody>
</table>

This visibility event data can not only be applied to FSMA 204 CTE needs but additional business use cases including:

- Inventory Management
- Asset Management
- Food Freshness
- Anti-counterfeiting
- Business Process Optimization

Section 4.6, of this Guideline describes how specific CTEs/KDEs required in the Final Rule can be mapped to the EPCIS Standard. For more information go to: https://www.gs1.org/standards/epcis.
4 Applying the GS1 System of Standards to Support FSMA 204

4.1 Supply Chain Process Flows for FSMA 204

The Final Rule requires "persons who manufacture, process, pack, or hold foods" to maintain and provide to their supply chain partners specific information (key data elements or KDEs) for certain critical tracking events (CTEs) in the food's supply chain. This framework forms the foundation for effective and efficient tracing and clearly communicates the information that U.S. FDA needs to perform such tracing. The information that companies must keep and send forward under the Final Rule varies depending on the type of supply chain activities they perform, from harvesting or production of the food through processing, distribution, and receipt at retail or other points of service.

The CTEs required by the rule are:

- Harvesting (for Raw Agricultural Commodities (RAC) not obtained from a fishing vessel)
- Cooling (before Initial Packing) (RACs not obtained from a fishing vessel)
- Initial Packing (RACs not obtained from a fishing vessel)
- First Land-based Receiver (Food obtained from a fishing vessel)
- Shipping
- Receiving
- Transformation

Please reference the U.S. FDA document on KDEs required for each CTE performed HERE.

The FSMA 204 Workgroup defined four supply chain process flows to aid in describing the CTEs/KDEs for each step as described in section 4.1.1 below.

4.1.1 End-to-End Flows and the Final Rule

The following examples show CTEs that the GS1 US food industry stakeholders have developed to suggest which supply chain partners are responsible for maintaining information for the Final Rule.

Important: Manufacturing (Transformation), Initial Packing, and other Transformation events may include comingling practices that need to be recorded internally to ensure the continuity of the data. The following supply chain processes and steps found in Appendix C of this document are meant to illustrate examples of the parties, locations, and steps that could be involved to meet FSMA 204 requirements.

4.1.1.1 Traceability for Whole Tomatoes

The whole tomato end-to-end traceability process below depicts food (tomatoes) being harvested and shipped to a cooling/packing facility where the initial traceability lot code is assigned. Note that the Cooling CTE is shown if that step takes place. The tomatoes are either shipped directly to a produce distributor who ships them to an operator/retailer or to a repacking house where they may be transformed with a new TLC and shipped to a retailer, store, or distribution center.
Figure 4-1 Whole Tomatoes End-to-End Process Flow

Go to Appendix A in this document for detailed process steps.

4.1.1.2 Traceability for Ready to Eat Salad

The Ready to eat salad (or diced tomato) end-to-end traceability process below depicts produce being harvested from more than one facility. The produce is placed into totes and sent to a cooling facility/packing house where produce may be sorted/graded and shrink-packed into cases for cooling; with initial packing, traceability lot codes are assigned. Note that the Cooling CTE is shown if that step takes place. Packing house ships to the processor/re-packer where a transformation (and new TLCs assigned) may occur. The cases are shipped to a distribution center and then to retail outlets or restaurants.
4.1.1.3 Traceability for Frozen Shrimp Aquaculture Farmed

In the example below, shrimp is harvested from a pond (U.S. FDA defines it as a container) by a broker who is the first receiver (Harvester). The head on shrimp is sorted, size graded (Initial Packing) and a TLC is assigned. The broker sells and transports the sorted shrimp to a processor.

The graded head-on shrimp are Shipped to the Processor who Receives them. Commingling and Transformation occur at the Processor (head removed, shelled, deveined, size graded). A new TLC is assigned, and the Processor is the TLC Source.

If additional processing is required by a secondary processor (freezing and packaging) another Transformation occurs. The secondary processor receives and keeps a record of the primary processor's TLC and lot code source. After freezing into bulk (Transformation) the secondary processor may assign a new TLC if the packaging is done later. When the secondary processor packages the frozen shrimp as a finished product (Transformation) a new traceability lot code is assigned, and the secondary processor becomes the TLC source.

The secondary processor sells the frozen packaged shrimp (Shipper) to an importer who places the product into a third-party cold storage (3PL). The 3PL (Receiver) shall not assign a new TLC and keeps the secondary processor as the TLC source. The importer sells the frozen shrimp to a retail or food service distributor and the product is shipped from the 3PL (Shipper). The retail or food service distributor (both Receiver and Shipper cannot change the TLC and keeps the TLC Source as a record). When the Distributor ships the product, they pass along the TLC and TLC Source. The restaurant or a grocery store (Final Receiver) keeps the passed along TLC and TLC source as a record.

Go to Appendix A in this document for detailed process steps.
Important: The fishing vessel supply chain process requires different CTEs.

Figure 4-3 Raw Shrimp End-to-End Process Flow

Go to Appendix A in this document for detailed process steps.

4.1.1.4 Traceability for Peanut Butter Cracker

In the final example, below, peanut butter crackers are created. First, the peanut butter/paste is manufactured, and TLCs are assigned by the primary peanut butter processor. Peanut butter/paste is transported to a 3rd party warehouse in tankers, where it is received. The 3rd party warehouse ships peanut butter/paste to a distributor/importer or directly to a multi-ingredient manufacturer. After receipt, the multi-ingredient manufacturer maintains existing TLCs of all ingredients used to make the peanut butter crackers and creates a new TLC for the finalized product (the peanut butter crackers), which would be considered initial packing. The peanut butter crackers are shipped to a retailer/vending machine/restaurant.
4.2 Critical Tracking Events (CTEs) and Key Data Elements (KDEs) Recordkeeping and Sharing

4.2.1 Data Sharing Under the Final Rule

This section will detail the CTE and KDE record keeping requirements of the Final Rule and map to existing data sharing standards within the GS1 System of Standards.

The Final Rule lays out requirements for what data the U.S. FDA will request during an investigation. As a part of those data requirements, the U.S. FDA also defines a subset of that data which is required to accompany foods as they are sent from one location to another so different companies subject to the rule can fulfill their obligations. The Final Rule does not segment the required data by specific data channels since it will all need to be combined when requested by the U.S. FDA. The U.S. FDA also does not specify a particular method for storing or exchanging data between trading partners.

Many companies use these GS1 Data Sharing Standards today in different business transactions such as EDI as well as in their Master Data systems, such as GDSN. Additionally, visibility event data captured and stored in event repositories according to the EPCIS standard can also be shared amongst trading partners alongside EDI messages. The KDEs required in the Final Rule could come from different existing sources of data such as Master Data and then be pulled from an EDI transaction through the GTIN, GLN, or SSCC.

Go to Appendix A in this document for detailed process steps.
4.2.2 Overview of the CTEs and KDEs of the Final Rule

The following tables detail the complete set of CTEs and KDEs required by the Final Rule, along with the GS1 Standard that can be leveraged to capture and share this information.

Table 4-1 Overview of the CTEs and KDEs of the Final Rule

<table>
<thead>
<tr>
<th>FSMA 204 CTE</th>
<th>EDI (TRANSACTION TYPE)</th>
<th>EPCIS (EVENT TYPE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvesting</td>
<td>N/A</td>
<td>Object</td>
</tr>
<tr>
<td>Cooling</td>
<td>N/A</td>
<td>Object</td>
</tr>
<tr>
<td>Initial Packing</td>
<td>N/A</td>
<td>Object</td>
</tr>
<tr>
<td>First Land-Based Receiver</td>
<td>N/A</td>
<td>Object</td>
</tr>
<tr>
<td>Shipping</td>
<td>Applicable (856 ASN)</td>
<td>Object/Aggregation</td>
</tr>
<tr>
<td>Transformation</td>
<td>N/A</td>
<td>Transformation</td>
</tr>
<tr>
<td>Receiving</td>
<td>Applicable (861 Receiving Advice)</td>
<td>Object/Aggregation</td>
</tr>
</tbody>
</table>
Table 1-2 The Complete set of CTEs and KDEs Required by the Final Rule

<table>
<thead>
<tr>
<th>Final Rule KDE Name</th>
<th>Applicable Final Rule CTEs</th>
<th>Corresponding GS1 Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Harvesting</td>
<td>Cooling</td>
</tr>
<tr>
<td>Traceability Lot Code of the food (Initial Packing, Shipped/Received, inputs of Transformation, or First Land-Based Receiver)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location Description for the farm where the food was harvested</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Product Description of the food (Initial Packing, Shipped, output of Transformation, or First Land-Based Receiver)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Quantity and Unit of Measure of the food (Initial Packing, Shipped/Received, the input of Transformation, or First Land-Based Receiver)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Commodity, and, if applicable, variety of the food (Harvested, Cooled, or received by Initial Packer)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Species and/or acceptable market name for unpackaged food (First Land-Based Receiver)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Quantity and Unit of Measure of the food (Harvested, Cooled, received by Initial Packer or First Land-Based Receiver)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>New Traceability Lot Code of the food (Transformed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Description of the new food (Transformed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity and Unit of Measure of the new food (Transformed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Produce: Name of the field or other growing area from which the food was harvested (must correspond to name used by the grower) OR Other information identifying the harvest location at least as precisely as field or growing area name</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Final Rule KDE Name</td>
<td>Applicable Final Rule CTEs</td>
<td>Corresponding GS1 Standards</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>For aqua cultured food: Name of the container (e.g., pond, pool, tank, cage) from which the food was harvested (must correspond to the container name used by the aquaculture farmer), OR Other information identifying the harvest location at least as precisely as the container name</td>
<td>X</td>
<td>GLN + GLN Data Model attributes of aquaculture container or other growing area</td>
</tr>
<tr>
<td>Location(s) for the fishing area where the food was caught (for seafood)</td>
<td>X</td>
<td>CBV ILMD of EPCIS ObjectEvent action= ADD w/ bizStep= commissioning or creating_class_instance</td>
</tr>
<tr>
<td>Location Description for where you cooled the food</td>
<td>X</td>
<td>GLN + GLN Data Model attributes of cooling facility</td>
</tr>
<tr>
<td>Location Description of Immediate Subsequent Recipient (other than transporter) / Receiving Location</td>
<td>X</td>
<td>GLN + GLN Data Model attributes of receiving location</td>
</tr>
<tr>
<td>Location description for the location from which you shipped the food / Immediate Previous Source</td>
<td>X</td>
<td>GLN + GLN Data Model attributes of receiving location</td>
</tr>
<tr>
<td>Location description for where the food was initially packed (i.e., traceability lot code source) and (if applicable), the traceability lot code source reference</td>
<td>X</td>
<td>GLN + GLN Data Model attributes of Initial Packing location</td>
</tr>
<tr>
<td>Location description for the first land-based receiver (i.e., traceability lot code source), and (if applicable) traceability lot code source reference</td>
<td>X</td>
<td>GLN + GLN Data Model attributes of First Land-Based Receiver location</td>
</tr>
<tr>
<td>Location description for the traceability lot code source or the traceability lot code source reference</td>
<td>X</td>
<td>GLN + GLN Data Model attributes of TLC source or GS1 Digital Link URI which can direct to TLC source</td>
</tr>
<tr>
<td>Location description for where you transformed the food (i.e., the traceability lot code source), and (if applicable) the traceability lot code source reference</td>
<td>X</td>
<td>GLN + GLN Data Model attributes of Transformation location or GS1 Digital Link URI which can direct to Transformation location</td>
</tr>
<tr>
<td>Date of harvesting</td>
<td>X</td>
<td>Event Date & Time in EPCIS Object Event of commissioning the food</td>
</tr>
<tr>
<td>Final Rule KDE Name</td>
<td>Applicable Final Rule CTEs</td>
<td>Corresponding GS1 Standards</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Date of cooling</td>
<td>X</td>
<td>Event Date & Time in EPCIS Object Event with action=Observe; BizStep=Arriving or Departing</td>
</tr>
<tr>
<td>Date of received food</td>
<td>X</td>
<td>Event Date & Time in EPCIS Object Event with action=Observe; BizStep=Receiving</td>
</tr>
<tr>
<td>Date of initial packing</td>
<td>X</td>
<td>Event Date & Time in EPCIS Transformation Event</td>
</tr>
<tr>
<td>Date of shipping food</td>
<td>X</td>
<td>DTM (Date/Time Reference) Segment within Shipment Hierarchical Level of ASN</td>
</tr>
<tr>
<td>Date of transformation completion</td>
<td>X</td>
<td>Event Date & Time in EPCIS Transformation Event</td>
</tr>
<tr>
<td>Harvest date range of the fishing trip (for seafood)</td>
<td>X</td>
<td>CBV ILMD of EPCIS ObjectEvent action= ADD w/ bizStep= commissioning or creating_class_instance</td>
</tr>
<tr>
<td>Date food was landed (for seafood)</td>
<td>X</td>
<td>Event Date & Time in EPCIS Object Event of commissioning the food</td>
</tr>
<tr>
<td>Business Name of the Harvester</td>
<td>X</td>
<td>GLN + GLN Data Model attributes of harvesting company</td>
</tr>
<tr>
<td>Phone Number of the Harvester</td>
<td>X</td>
<td>GLN + GLN Data Model attributes of harvesting company</td>
</tr>
<tr>
<td>Reference Document Type(s)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Reference Document Identifier(s)</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Important: This table is a list of all the KDEs in the Final Rule at the time of publication of this Guideline.

4.3 Product Description KDEs

As noted earlier, this guide illustrates how a GTIN in conjunction with standardized attributes describing the food can fulfill the product description KDEs of the Final Rule. The following is the definition of Product Description contained within the Final Rule.
Product description means a description of a food product and includes the product name (including, if applicable, the brand name, commodity, and variety), packaging size, and packaging style. For seafood, the product name may include the species and/or acceptable market name.

In the Final Rule, the FDA provided an example table of what the Product Description (called Traceability Product Description) KDEs could look like. It is recreated here for ease of review and comparison to applicable standards.

Table 4-3 Example of GTINs for Traceability Product Descriptions and Traceability Product Identifiers

<table>
<thead>
<tr>
<th>GTIN OR OTHER PRODUCT IDENTIFIER</th>
<th>BRAND NAME</th>
<th>COMMODITY</th>
<th>VARIETY</th>
<th>PRODUCT NAME</th>
<th>PACKAGING SIZE</th>
<th>PACKAGING STYLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>00614141007349</td>
<td>Brand ABC</td>
<td>Tomatoes</td>
<td>Cherry</td>
<td>n/a</td>
<td>25 LB</td>
<td>Carton</td>
</tr>
<tr>
<td>00614141004366</td>
<td>Brand ABC</td>
<td>n/a</td>
<td>n/a</td>
<td>Sprout Mix</td>
<td>4 oz</td>
<td>Clamshell</td>
</tr>
<tr>
<td>10012345000055</td>
<td>Brand 123</td>
<td>Tuna</td>
<td>Atlantic Bluefin</td>
<td>n/a</td>
<td>10 KG</td>
<td>Bin</td>
</tr>
<tr>
<td>804982658000736</td>
<td>Brand XYZ</td>
<td>N/A</td>
<td>N/A</td>
<td>Queso Fresco</td>
<td>12 x 8 oz</td>
<td>Vac Pack</td>
</tr>
<tr>
<td>105146287231822</td>
<td>Brand 999</td>
<td>N/A</td>
<td>N/A</td>
<td>Small Vegetable Tray w/ dip</td>
<td>6 oz</td>
<td>Tray</td>
</tr>
<tr>
<td>107483945748382</td>
<td>Brand 111</td>
<td>N/A</td>
<td>N/A</td>
<td>Peanut Butter Sandwich Cracker</td>
<td>12 oz</td>
<td>Box</td>
</tr>
</tbody>
</table>

Note: Adapted from FDA table Example of Data Attributes for Traceability Product Descriptions and Traceability Product Identifiers

When the U.S. FDA asks for records from a company subject to the rule, the product description KDEs could be defined by one of their trading partners. For example, a restaurant operator purchases many different products from several different suppliers. The restaurant operator will receive descriptions of those products from the suppliers instead of generating new product descriptions. However, if the U.S. FDA requests data from the restaurant operator, the U.S. FDA will still expect the operator to have quick access to the product description KDEs. This means trading partners will need to have a reliable method for exchanging the attributes that will fulfill the U.S. FDA’s requirements around product descriptions.

Companies following GS1 Standards commonly turn to the GDSN and the GDM to serve as reliable data sharing methods. This section is only intended to illustrate mappings between the Final Rule and attributes from applicable GS1 Standards. It is not intended to provide all the information necessary to implement these standards but can serve as a foundation for discussion between compliance teams and teams responsible for product information.

The following sub-sections will illustrate mappings between the product description KDEs defined by the U.S. FDA in the Final Rule and attributes within these share standards. Unless otherwise noted, the attributes detailed in these sub-sections apply to both GDSN and GDM.
4.3.1 Brand Name

For the Brand Name KDE, this guidance recommends utilizing the `brandName` attribute. Details of the attribute:

- Definition from *Attribute Definitions for Business* (ADB): The name provided by the brand owner that is intended to be recognized by the consumer as represented on the product.
- Business Message Standard (BMS) ID: 3541
- Format: A free-form text string accommodating 1 to 105 characters

4.3.2 Commodity

For the Commodity KDE, this guidance recommends utilizing the `importClassificationTypeCode` and `importClassificationValue` attributes supplemented by the `functionalName` attribute. This set of attributes can be further augmented by the `gpcCategoryCode` which is an attribute for expressing the GS1 Global Product Classification (GPC) code value, a product classification scheme already required by GDSN and GDM.

4.3.2.1 importClassificationTypeCode and importClassificationValue

- Definition from *Attribute Definitions for Business*: The code that describes the customs classification system and the tariff value applied to a product associated with the Customs Classification Type Code.
- Business Message Standard (BMS) ID: 2776 & 2777
- Format: Code value and a free-form text string accommodating 1 to 70 characters
- Comment: This pair of attributes can be utilized for declaring the US Harmonized Tariff Schedule code value and accompanying description, which can be recognized as a helpful attribute for describing a food as a commodity.

4.3.2.2 functionalName

- Definition from *Attribute Definitions for Business* (ADB): The generic description provided by the seller to describe the type, form, or function of the product or service.
- Business Message Standard (BMS) ID: 3508
- Format: A free-form text string accommodating 1 to 35 characters
- Comment: this attribute is commonly used with fresh foods, like produce, to declare the product family name. Apples, Lemons, and Grapes are all examples of fruits.

4.3.3 Variety

For the Variety KDE, this guidance follows the Trade Item Implementation Guidance (TIIG) prescription to utilize the `variantDescription` attribute. Additionally, this guidance recommends using the context of the GPC Class and Family values as further context. Details of the `variantDescription` attribute:

- Definition from *Trade Item Implementation Guidance* (TIIG): In Fresh Foods, the attribute ‘variant’ will be used to express the particular variety of the product. Information providers may specify the distinguishing characteristics that differentiate similar products of the same type, brand, family, and functionality.
- Business Message Standard (BMS) ID: 3520
- Format: Code value & a free-form text string accommodating 1 to 500 characters
Comment: Golden Delicious is a recognized variety of apples that are marketed in the United States and would populate the variantDescription attribute.

4.3.4 Product Name

For the Product Name KDE, this guidance recommends utilizing the tradeItemDescription attribute.

Details of the tradeItemDescription attribute:

- Definition from [Attribute Definitions for Business](ADB): An understandable and useable description of a product using a combination of key elements such as Brand Name, Sub-Brand (if applicable), Functional Name, Variant, and Net Content. The description should be unique and meaningful for the Retailers to manage the product through their business and describe the product to their consumers e.g., Brand, flavor, scent, etc.
- Business Message Standard (BMS) ID: [3517](#)
- Format: Code value & a free-form text string accommodating 1 to 200 characters

4.3.5 Packaging Size

For the Packaging Size KDE, this guidance recommends utilizing the grossWeight and @measurementUnitCode pair of attributes supplemented by additional attributes. Details of the recommended pair and supplement attributes are listed here:

4.3.5.1 grossWeight and @measurementUnitCode – Recommended

- Definition from [Attribute Definitions for Business](ADB): The total weight of the product including the weight of all its packaging materials.
- Business Message Standard (BMS) ID: [3777 & 3778](#)
- Format: A free-form text string accommodating 1 to 70 characters and code value

4.3.5.2 netContent and @measurementUnitCode – Supplement

- Definition from [Attribute Definitions for Business](ADB): The quantity (or quantities) of the product contained in the package along with its unit of measure typically printed on the label for the country or market where the product is sold.
- Business Message Standard (BMS) ID: [3733 & 3734](#)
- Format: A free-form text string accommodating 1 to 70 characters and code value

4.3.5.3 netContentStatement – Supplement

- Definition from [Attribute Definitions for Business](ADB): The literal reproduction of the net content(s) as displayed on the product packaging.
- Business Message Standard (BMS) ID: [3741](#)
- Format: a free-form text string accommodating 1 to 500 characters

4.3.5.4 netWeight and @measurementUnitCode – Supplement

- Definition from [Attribute Definitions for Business](ADB): The weight of the product excluding the weight of all its packaging materials.
- Business Message Standard (BMS) ID: [5470 & 5471](#)
- Format: a free-form text string accommodating 1 to 70 characters and code value
4.3.6 Packaging Style

For the Packaging Style KDE, this guidance recommends utilizing the packagingTypeCode attribute supplemented by the TradeItemUnitDescriptorCode and PackagingMaterialTypeCode attributes. Details of the attributes are listed here:

4.3.6.1 packagingTypeCode – Recommended

- Definition from Attribute Definitions for Business (ADB): The code for the type of package or container of the product.
- Business Message Standard (BMS) ID: 2186
- Format: code value

4.3.6.2 TradeItemUnitDescriptorCode – Supplement

- Attribute Definitions for Business (ADB): The code that describes the product's packaging level.
- Business Message Standard (BMS) ID: 66
- Format: code value

4.4 Location Description KDEs

The Location Description KDEs in the Final Rule can be fulfilled by using a GLN to identify a physical location and accompanying standardized attributes describing the location. The following is the definition of Location Description contained within the Final Rule.

"Location description means key contact information for the location where a food is handled, specifically the business name, phone number, physical location address (or geographic coordinates), city, State, and zip code for domestic locations, and comparable information for foreign locations, including country."

In the Final Rule, the U.S. FDA provided an example of how data attributes for the Location Description KDEs could look like. It is amended here for ease of review and comparison to applicable standards:

<table>
<thead>
<tr>
<th>DATA ATTRIBUTES OF LOCATION DESCRIPTION</th>
<th>EXAMPLES OF EACH ATTRIBUTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Name</td>
<td>Fin-to-Tail Processing Co.</td>
</tr>
<tr>
<td>Primary Phone Number</td>
<td>222.222.2222</td>
</tr>
<tr>
<td>Physical Location Street Address</td>
<td>456 Blue Water Way</td>
</tr>
<tr>
<td>City</td>
<td>Sarasota</td>
</tr>
<tr>
<td>State</td>
<td>FL</td>
</tr>
<tr>
<td>ZIP code</td>
<td>98765</td>
</tr>
</tbody>
</table>

When the U.S. FDA asks for records from a company subject to the rule, the location description KDEs could be defined by one of their trading partners since the locations a product is being shipped to, received from, or the traceability lot code source will likely each be a different company for many CTEs recorded in the supply chain.

Exchanging data describing the physical locations between trading partners has been a routine part of business but utilizing a channel that follows a standard convention is still rather novel. The following
sub-sections will illustrate mappings between the Location Description KDEs defined by the U.S. FDA in the Final Rule and attributes defined in the GS1 GLN Data Model Solution Standard. This section is only intended to illustrate mappings between the Final Rule and attributes from that GS1 Standard. It is not intended to provide all the information necessary to implement the standards but can serve as a foundation for discussion between compliance teams and teams responsible for location information.

4.4.1 Business Name

For the Business Name KDE, this guidance recommends utilizing the `gs1:organizationName` attribute. Details of the attribute:

- **Definition from GLN Data Model:** The default name of the organization expressed in text.
- **Format:** A language qualified, free-form string of text (rdf:langString)

The GLN data model also includes `gs1:organizationLegalName` and `gs1:organizationTradingName` as additional options for expressing the name used to recognize the business in varying circumstances. These may be appropriate attributes to use in conjunction with `gs1:organizationName`.

4.4.2 Physical Location Address

For the Physical Location Address KDE, this guidance recommends utilizing the `gs1:streetAddress` attribute. Details of the attribute:

- **Definition from GLN Data Model:** The street address expressed as free-form text. The street address is printed on paper as the first lines below the name. For example, the name of the street and the number in the street or the name of a building.
- **Format:** A language qualified, free-form string of text (rdf:langString)

The GLN data model includes four different attributes for exchanging different lines of a street address. The additional lines can be used in conjunction with the first. These attributes are a part of the `gs1:PostalAddress` class within the GLN Data Model.

4.4.2.1 GPS Coordinates – alternative

The definition for Location Description notes that the Physical Location Address can also be fulfilled by geographic coordinates. The GLN Data Model enables physical locations to express a single pair of coordinates (i.e., Latitude and Longitude) or a group of coordinates expressing the shape of a location. These can be expressed in place of the `gs1:PostalAddress` attributes or in conjunction.

For more information please see: `gs1:GeoCoordinates` or `gs1:GeoShape`.

4.4.3 City

For the City KDE, this guidance recommends utilizing the `gs1:addressLocality` attribute. Details of the attribute:

- **Definition from GLN Data Model:** Text specifying the name of the locality, for example, a city.
- **Format:** A language qualified, free-form string of text (rdf:langString)

The GLN data model includes additional attributes for expressing a suburb or county of the location (`gs1:addressSuburb` and `gs1:countyCode`). This level of detail is not explicitly mentioned by the Final Rule but might be relevant to some members if the expressing the city of their locations often requires further clarification. These attributes are a part of the `gs1:PostalAddress` class within the GLN Data Model.
4.4.4 State
For the State KDE, this guidance recommends utilizing the gs1:addressRegion attribute. Details of the attribute:

- Definition from GLN Data Model: Text specifying a province or state in abbreviated format, for example, NJ.
- Format: A language qualified, free-form string of text (rdf:langString)

This attribute is a part of the gs1:PostalAddress class within the GLN Data Model.

4.4.5 Zip Code
For the Zip Code KDE, this guidance recommends utilizing the gs1:postalCode attribute. Details of the attribute:

- Definition from GLN Data Model: Text specifying the postal code for an address.
- Format: a free-form string of text (xsd:string)

This attribute is a part of the gs1:PostalAddress class within the GLN Data Model.

4.4.6 Phone Number
For the Phone Number KDE, this guidance recommends utilizing the gs1:telephone attribute. Details of the attribute:

- Definition from GLN Data Model: A telephone number for example +44 217 992 9999.
- Format: a free-form string of text (xsd:string)

The gs1:telephone attribute is a part of the gs1:ContactPoint class within the GLN Data Model and can be expressed alone or with attributes to give more complete context about the phone number such as the department behind the phone number. The class also includes other means of contact such as email, fax, website, and social media. While this additional context and means of contact are not requirements of the Final Rule, they may be helpful additional context for companies.

4.4.7 Comparable Information for Locations Outside the US
The Location Description KDEs reflect the typical attributes that make up an address for a US based location. The definition for Location Description notes that comparable information is expected for non-US locations including the country. The GLN Data Model can accommodate the country of an address through the gs1:addressCountry attribute which accommodates a code value representing a country.

The GLN Data Model was developed through the Global Standards Management Process and is flexible for accommodating both US and non-US addresses when exchanging data between trading partners.

4.4.8 Harvester Business KDEs
The Business Name and Phone Number of the Harvester of a Raw Agricultural Commodity are required to be supplied to the initial packer. This pair is a shorter set of KDEs than the Location Description but can also be fulfilled by using a GLN + GLN Data Model. “Name of the field or other growing area from which the food was harvested (must correspond to the Name used by the grower), or other information identifying the harvest location at least as precisely as field or growing area.” A Harvester company, as a party, can be identified by a GLN and have its business name and phone number associated with it using the GLN Data Model. The same GLN Data Model Attributes mapped to the Business Name and Phone Number of the Location Description can be utilized for these two KDEs of the Harvester. Consult the mappings above for the specific KDEs.
4.4.9 Growing Areas Coordinates

The Final Rule includes requirements for farms to keep a record of fields, growing areas, or aquaculture containers as a part of their Traceability Plan. For a farm that grows or raises a food on the FTL (other than eggs), this means including a map of the areas where the good is grown or raised.

- The farm map needs to include the name, coordinates, and any other information used to identify each field, growing area, etc.
- For aquaculture farms, the expectation for the farm maps is similar to the non-aquaculture farms but specifically mentions containers (e.g., pond, pool, tank, cage) instead of fields.

Each of these locations could also be identified by a GLN and have descriptive KDEs recorded as attributes from the GLN Data Model. Attributes noted above, as a part of the Location Description KDEs, could also be utilized here with special attention on the GPS coordinates than can be used for Physical Location Address. See section 4.4.2 Physical Location Address.

4.5 Shipping CTE and the Advance Ship Notice (ASN)

U.S. FDA requires trading partners for the Shipping critical tracking event or CTE to exchange key data elements or KDEs. GS1 EDI transaction Dataset, Advance Shipping Notice (ASN) can be utilized to meet this requirement.

Companies following GS1 Standards commonly turn to an existing transaction dataset, the Advance Ship Notice (ASN) to serve this requirement. The following sub-sections will illustrate mappings between the product KDEs defined by the U.S. FDA in the Final Rule and attributes within this EDI sharing standard. This section is only intended to illustrate mappings between the Final Rule and attributes from applicable GS1 Standards. It is not intended to provide all the information necessary to implement these standards but can serve as a foundation for discussion between compliance teams and teams responsible for shipping information.

In July 2020, GS1 US published a new release of the 856 Ship Notice/Manifest – Foodservice guideline for v7050 of the Uniform Communication Standard (UCS). An 856 Ship Notice/Manifest (frequently referred to as Advance Ship Notice (ASN)) is an EDI transaction from a party shipping goods to notify the receiver that a shipment will be forthcoming. This transaction is commonly used in the U.S. food industry. The data in the examples below compare the Final Rule Shipping CTE and the data in the Advance Ship Notice (ASN).

For details on using ASN 856 to meet the FSMA 204 Shipping event please refer to the GS1 US EDI Recommendations for FSMA 204 Critical Tracking Events document.

4.5.1 Traceability Lot Code

The Shipping CTE requires a handful of KDEs to be linked to the Traceability Lot and for this lot to be recorded as the Traceability Lot Code. For the Traceability Lot Code KDE, this guidance states the GTIN and the batch/lot number of the food must be used. AI(01) + AI(10) must be used together.

Within the Pack Hierarchical Level, a "LIN" segment can express a GTIN followed by a lot number with the following data format:

- Code Value of "UK" indicating "GTIN-14"; "UP" for "GTIN-12", as well
- Identifier: free-form field of up to 80 characters
- Code Value of "LT" indicating "Lot Number"
- Identifier: free-form field of up to 80 characters

Example: LIN"01*UK"10614141000002*LT*ABCDE12345~

*This pack is identified by a GTIN-14 (10614141000002) and lot # ABCDE12345
4.5.2 Quantity and Unit of Measure of the Food

For the Quantity and Unit of Measure KDEs, this guidance recommends utilizing an SN1 - Item Detail (Shipment) segment within the Pack Hierarchical Level.

Within the Pack Hierarchical Level, an "SN1" segment can express a numeric quantity of the item followed by a unit of measure:

- Number of units: numeric value up to 10 characters
- Code Value of primary Unit of Measure for the product (e.g., Case, Net Kilograms, Pound, Pounds Gross)

Example: SN1*25*CA~

This pack has 25 cases

4.5.3 Product Description of the Food

By utilizing the GTIN as a part of the Traceability Lot Code KDE, companies can link to the other mechanisms they are already utilizing for exchanging attributes with trading partners which describe food products. The GTIN can act as the bridge between the two different data sets when pulling data together for an U.S. FDA request under the Final Rule.

4.5.4 Location Description of Immediate Subsequent Recipient (other than Transporter)

For the Location Description of Immediate Subsequent Recipient KDE, this guidance recommends recording a GLN of the Ship-To location. This GLN can then link to the attributes exchanged following the GLN Data Model which fulfils the Location Description KEDEs requirement. In an ASN, this is expressed as an N1 – Party Identification segment.

Within the Shipment Hierarchical Level, an "N1" segment expresses a GLN preceded by three other descriptive fields in the following data format:

- Code Value of "ST" indicating the "Ship To"
- Name: 1 to 60 characters, alpha-numeric
- Code Value of "UL" indicating the following identifier is a GLN
- Identifier: field for the GLN of the "Ship To"

Example: N1*ST*Ewing DC*UL*0840002011112~

This was shipped to Ewing DC (GLN=0840002011112)

4.5.5 Location Description for the Location From Which You Shipped the Food

For the Location Description for the Location from Which You Shipped the Food KDE, this guidance recommends recording a GLN of the Ship-From location. Like with the previous KDE, this GLN can then link to the attributes exchanged following the GLN Data Model which fulfils the Location Description KDEs requirement. In an ASN, this is expressed as an N1 – Party Identification segment. This segment can be expressed more than once within a hierarchical level which enables both a Ship-to and Ship-from to be expressed.

Within the Shipment Hierarchical Level, an "N1" segment expresses a GLN preceded by three other descriptive fields in the following data format:

- Code Value of "SF" indicating the "Ship From"
4.5.6 Date the Food Was Shipped

For the Date the Food Was Shipped KDE, this guidance recommends recording a date in the DTM – Date/Time Reference segment. The Final Rule only requires the date that food was shipped within this CTE, however, companies can express time within this segment if necessary.

Within the Shipment Hierarchical Level, a “DTM” segment expresses a qualifier for the nature of the date and the actual date. Here is the format:

- Code Value of “011” indicating what follows is a “Shipped” date
- Date: format of CCMMYYDD; CC is the first two digits of the calendar year

Example: DTM*011*20220818~

Shipment departed on August 18, 2022

4.5.7 Location Description for the Traceability Lot Code Source or the Traceability Lot Code Source Reference

When a company ships a food from the FTL, they are expected to not only record the places it ships from and is received but also the Traceability Lot Code Source. Here is the definition from the Final Rule:

Traceability lot code source means the place where a food was assigned a traceability lot code. [Reference link.]

For the Traceability Lot Code Source KDE, this guide will illustrate how a GLN can be recorded alongside each TLC expressed within an ASN. Like with the previous KDE, this GLN can then link to the attributes exchanged following the GLN Data Model which fulfills the Location Description KDEs requirement.

Like the Shipping Location and Immediate Subsequent Recipient location KDEs above, this KDE can utilize the N1 – Party Identification segment. Unlike those other KDEs, this “N1” segment is expressed within the Pack Hierarchical Level to distinguish that it only applies to the items in that instance of the hierarchical level instead of to the shipment, overall.

This “N1” segment expresses a GLN preceded by three other descriptive fields in the following data format:

- Code Value of “MP” indicating “Manufacturing Plant”; OR “16” for “Plant”
- Name: 1 to 60 characters, alpha-numeric
- Code Value of “UL” indicating the following identifier is a GLN
- Identifier: field for the GLN of the "Manufacturing Plant"

Example 1 (using GLN):
4.5.8 Shipment Reference Document Type

For the Shipment Reference Document Type KDE, this guidance recommends utilizing the ST – Transaction Set Header which is a mandatory component of the EDI document and identifies the document that follows as an ASN. The "ST" contains these elements in the following data format:

- Code Value of "856" indicating “Ship Notice/Manifest”
- Transaction Set Control Number: 4 to 9 characters, alpha-numeric

Example: ST*856*0001~

This EDI document is an 856 and the first of the functional group

4.5.9 Shipment Reference Document Identifier

For the Shipment Reference Document Identifier KDE, this guidance recommends utilizing the BSN – Beginning Segment for Ship Notice which is a mandatory component of the ASN.

The "BSN" contains these elements in the following data format:

- Code Value of "00" indicating “Original”
- Identifier: 2 to 30 characters, alpha-numeric
- Date: format of CCMMYYDD; CC is the first two digits of the calendar year
- Time: format of HHMM, HHMMS, HHMMSSD, or HHMMSSDD; (24-hr)
- Code Value of "0008" indicating ASN has Shipment/Order/Tare/Pack

Example: BSN'00'SI39383092'20220818'0600'0008~

1st submission of shipment #SI39383092 on Aug 18, 2022, at 6 am, contains Shipment/Order/Tare/Pack hierarchical levels are used

4.6 Mapping FSMA 204 CTEs and KDEs with GS1 EPCIS

Even though the Final Rule does not prescribe a specific method for sharing data with trading partners, this guideline provides additional mappings to GS1 Share Standards to illustrate how to use those structures as a vision for enhanced Supply Chain Visibility with robust record keeping. These mappings will focus on the use of EPCIS since it is a natural way of modeling CTEs and KDEs. Often, the data
exchanged via EPCIS is described as Physical or Visibility Event Data to distinguish it from other data sharing channels.

EPCIS has an accompanying standard, the Core Business Vocabulary (CBV), which defines the vocabularies that can populate EPCIS events. These mappings are simply a vision for how data structures can be applied to the Final Rule. This section is not intended to provide all the information necessary for implementing EPCIS, just mappings to the key fields. Each CTE will have its own section with the required KDEs and full EPCIS example data can be found in the GS1 US EPCIS Recommendations for FSMA 204 Critical Tracking Events document.

For further information on EPCIS and the complete EPCIS and Core Business Vocabulary documents, visit the GS1 EPCIS Standards Page.

4.6.1 Traceability Lot Code

For the Traceability Lot Code KDE, this guidance recommends recording both the GTIN and the Batch/Lot number of the food.

The epcClass field of an EPCIS event can record a GTIN, GTIN + lot number, GTIN + serial number depending on the business needs.

4.6.2 Quantity and Unit of Measure of the Food

For the Quantity and Unit of Measure KDEs, this guidance recommends utilizing the quantity and Unit of measure, expressed as "uom", fields of an EPCIS event. Quantity can accept a numeric value for the amount of food products identified by the value in the epcClass. The uom field is used for expressing a code value of standard units of measure to qualify the amount expressed in the quantity field.

4.6.3 Product Description of the Food

By utilizing the GTIN as a part of the Traceability Lot Code KDE, companies can link to the other channels they are already utilizing for exchanging attributes with trading partners that describe food products. The GTIN can act as the bridge between the two different data sets when pulling information for an U.S. FDA request under the Final Rule. For information on how product and/or lot related master data can be communicated with EPCIS event data, section 6.5 of the EPCIS and CBV Implementation Guideline, found at the following link, can provide additional insights: https://ref.gs1.org/guidelines/epcis-cbv/2.0.0/

4.6.4 Location Description for the Immediate Previous Source (other than a transporter)

For the Location Description for the Immediate Previous Source CTE, this guidance recommends recording a GLN within the EPCIS event to represent this location. This GLN can then link to the attributes exchanged following the GLN Data Model which fulfils the Location Description KDEs requirement. In EPCIS, this GLN would be recorded in the source field with a type declaring that it is a location versus a party. For information on how location related master data can be communicated with EPCIS event data, section 6.5 of the EPCIS and CBV Implementation Guideline, found at the following link, can provide additional insights: https://ref.gs1.org/guidelines/epcis-cbv/2.0.0/

4.6.5 Location Description for Where the Food Was Received

For the Location Description of Where the Food Was Received CTE, this guidance recommends recording a GLN within the EPCIS event to represent this location. This GLN can then link to the attributes exchanged following the GLN Data Model which fulfils the Location Description KDEs requirement. In EPCIS, this GLN would be recorded in the readPoint field of the event. The readPoint field represents where the food was received, and the GLN is expressed in a URI format within the readPoint field.
4.6.6 Date the Food was Received

For the Date the Food was Received CTE, this guidance recommends utilizing the eventTime and eventTimeZoneOffset fields within an EPCIS event. The Final Rule only requires a date, but sequencing events appropriately is a key part of EPCIS, so time is recorded in conjunction with the date.

4.6.7 Location Description for the Traceability Lot Code Source or the Traceability Lot Code Source Reference

With EPCIS, the location where a lot code was assigned would be recorded in an EPCIS event related to Initial Packing, Transformation, and First Land-Based Receiver CTEs. If a downstream company was interested in this information, such as during receiving, they could provide an upstream query to request that event. The location would be identified with a GLN and the Location Description KDEs could be linked through that GLN. This information could also be provided at a web address referenced by a GS1 Digital Link representing the Traceability Lot Code in the EPCIS event data. For more information on how EPCIS event data can be exchanged in this manner, please refer to section 6 the GS1 EPCIS and CBV Implementation Guideline.

Figure 4-6 EPCIS Capture and Query Data Modelling

Image Source: https://ref.gs1.org/guidelines/epcis-cbv/2.0.0/

4.6.8 Reference Document Type and Reference Document Number

The bizTransaction list within an EPCIS event enables the declaration of different business transactions that are relevant context for the event. This could be a document such as a Bill of Lading or Receiving Advice. This guidance recommends using these fields to express the document number and its type. If certification details are to be provided, a URL that indicates where this information can be found can also be placed in the certificationInfo field of an EPCIS event.
5 **Best Practices for Mixed Pallets**

Shipping and receiving homogenous pallets with the same product GTIN and lots are the simplest form of a logistics unit. However, supply chain partners frequently break homogeneous pallets to create either a new pallet with mixed products, a new pallet with the same product from different lots, or different GTINs and lots within the same pallet.

The Serial Shipping Container Code (SSCC) is a GS1 identifier that can be used to identify a logistic unit. This unique identifier is comprised of an Extension Digit, a GS1 Company Prefix, a Serial Reference, and a Check Digit. A logistic unit can be any combination of units put together in a case or on a pallet or truck where the specific unit load needs to be managed throughout the supply chain. The SSCC enables this unit to be tracked individually, which brings benefits for order and delivery tracking and automated goods receiving.

Because the SSCC provides a unique number for the delivery, it can be used as a lookup number to provide not only detailed information regarding the contents of the load but can also be linked to the additional information in a pre-received ASN. Some entities will use the SSCC at the pallet level in conjunction with an ASN. This provides the greatest benefit, as it allows for visibility with CTEs along the supply chain.

Below are the different types of configurations that can be created and shipped as a logistics unit on a pallet.

- **Same Trade Items**: all units on the pallet are of the same GTIN and lot number.
- **Mixed Trade Items**: the units on the pallet are of different GTINs.
- **Mixed Trade Items and Lots**: the units on the pallet are of different GTINs along with different lots for the same GTIN.

![Figure 5-1 Logistic Units in Various Configurations](image)

In addition to the examples above, break packs can happen when a case is broken down (reducing the GTINs in the case or on the pallet) or when different items are placed in totes and shipped to a store.
The SSCC is a unique identifier for a pallet that is encoded in GS1-128 barcodes and printed on the pallet label. It can aid in linking to the data in the ASN to determine the details of the logistics unit. Note the illustration below.

The EDI ASN can be sent in advance of the shipment to trading partners, communicating exactly how many GTINs, lots, etc. are on a given pallet (a logistics unit). The receiver can scan the SSCC barcode and can capture all the information needed to identify what is on the pallet by linking to the information previously stored from the ASN.
The use of SSCCs on the logistics unit label in a GS1-128 barcode and the information in a corresponding ASN can be used to help comply with the Final Rule.

The pallet has the SSCC barcode on a label, which can be linked to an ASN where the SSCC is shared in the MAN and the GTINs and lots in the LIN, as illustrated below.

Because the SSCC provides a unique number for the delivery, it can be used as a lookup number to provide not only detailed information regarding the contents of the load but can also be linked to the additional information in a pre-received Advance Ship Notice (ASN). Some entities will use the SSCC at the pallet level and using this in conjunction with an ASN provides the greatest benefit, as it allows for visibility with (CTEs along the supply chain.

SSCCs identify logistics units (pallets, shipping containers, etc.), acting as a license plate for a specific shipment. When used in conjunction with an ASN, the SSCC will identify the contents of that shipping unit. Because it identifies shipment contents, the SSCC is only relevant from the time of shipment to the time of receipt. Once the logistics unit (pallet, shipping container, etc.) is received, the SSCC is no longer of any value (except if the recipient is storing the SSCC in their system and needs to trace which items were included in a specific SSCC, i.e., re-tracing in the event of cross-contamination of products).
Figure 5-5 Logistic Unit Marked with an SSCC

Image Source: *Food Industry Guidance for Streamlining Your Logistics Labels*

The use of a barcode and an identification number contains all the necessary information for managing logistic units in transport. The use of the SSCC in an ASN enables sharing the detailed information we see on logistic unit labels (often on pallets) today.
6 Appendix A – Detailed Steps for Supply Chain Process Flows

6.1 Whole Tomatoes Detailed Process Steps

The whole tomato end-to-end traceability process below depicts food (tomatoes) being harvested and shipped to a cooling/packing facility where the initial traceability lot code is assigned. Note that the Cooling CTE is shown if that step takes place. The tomatoes are either shipped directly to a produce distributor who ships them to an operator/retailer or to a repacking house where they may be transformed with a new TLC and shipped to a retailer distribution center and store.

![Whole Tomatoes Process Flow](attachment:Whole_Tomatoes_Process_Flow.png)

Important: The rule states: "For each raw agricultural commodity (not obtained from a fishing vessel) on the Food Traceability List that you cool before it is initially packed...". [Reference Link]

1. Produce is picked in the field of Produce Seed Company/Harvester and placed into totes - Harvest CTE
 a. Produce totes can be commingled with similar items from other farms and lot/batch numbers should be assigned
 b. Produce undergoes sorting/grading and is placed into additional totes
 c. GTIN is assigned to produce
 d. GLN identifies Farm/Greenhouse (harvest location)
 e. Produce totes are taken to a Packing House owned by the farm
 f. GLN identifies Packing House
2. Produce undergoes cooling/washing at Packing House – Cooling CTE
 a. Packing House tests produce for freshness/disease and rinse/washes produce

3. Produce is sorted/graded and placed into cases ** – Initial Packing CTE
 a. GTIN and TLC are assigned and can be encoded in a data carrier
 b. Packing House is identified as the TLC Source with a GLN

4. Produce is packed for transport in cases and/or pallets and shipped to Re-packer (Processor) – Shipping CTE
 a. GLN identifies Re-Packing Facility
 b. Produce GTIN + TLC (assigned in step 3) quantities are recorded
 c. SSCC can be assigned and encoded in a data carrier if pallets are created

5. Produce is received at Re-packer (Processor) – Receiving CTE
 a. GLN identifies Re-packing Facility
 b. Produce GTINs + TLC (assigned in step 3) quantities are captured and recorded

6. Produce could be trimmed/repackaged at Re-packer/Processor – Transformation CTE
 a. New GTIN + TLC is assigned if cases are repackaged/processed

7. Produce is packed for transport to Distributor – Shipping CTE
 a. GLN identifies Distribution Center
 b. Produce GTIN + TLC (assigned in step 6) quantities are recorded
 c. SSCCs can be assigned and encoded in a data carrier if new pallets are created

8. Produce is received at Distribution Center – Receiving CTE
 a. GLN identifies Distribution Center
 b. GTINs + TLC (assigned in step 6) quantities are captured and recorded

9. Distribution Center picks cases to create a shipment to Restaurant/Store – Shipping CTE
 a. GLN identifies Restaurant/Store
 b. Produce GTINs + TLC (assigned in step 6) quantities are captured/recorded
 c. SSCCs can be assigned and encoded in a data carrier for new pallets

10. Produce is received by Restaurant/Store – Receiving CTE
 a. GLN identifies Restaurant/Store
 b. Produce GTINs + TLC (assigned in step 6) quantities are captured/recorded

** Note:** For retailers, there could be a retailer-owned distribution center prior to the final destination

** Note:** Produce can be packed in cases, totes, bins, or any other container throughout the supply chain.

6.2 Ready to Eat Salad Detailed Process Steps

The Ready to eat salad (or diced tomato) end-to-end traceability process below depicts produce being harvested from more than one facility. The produce is placed into totes and sent to a cooling
facility/packing house where produce may be sorted/graded and shrink-packed into cases for cooling; with initial packing, traceability lot codes are assigned. Note that the Cooling CTE is shown if that step takes place. Packing house ships to the processor/re-packer where a transformation (and new TLCs assigned) may occur. The cases are shipped to a distribution center and then to retail outlets or restaurants.

The Ready to eat salad (or diced tomato) end-to-end traceability process below depicts produce being harvested from more than one facility. The produce is placed into totes and sent to a cooling facility/packing house where produce may be sorted/graded and shrink-packed into cases for cooling; with initial packing, traceability lot codes are assigned. Note that the Cooling CTE is shown if that step takes place. Packing house ships to the processor/re-packer where a transformation (and new TLCs assigned) may occur. The cases are shipped to a distribution center and then to retail outlets or restaurants.

Figure 6-2 Ready to Eat Salad Process Flow

![Ready to Eat Salad Process Flow Diagram]

Important: The Final Rule states: "For each raw agricultural commodity (not obtained from a fishing vessel) on the Food Traceability List that you cool before it is initially packed...". [Reference Link](#)

1. Produce is picked in the Field or from Greenhouse and placed into totes - Harvest CTE
 a. Produce totes can be comingled with similar items from other Fields/Greenhouses and lot/batch numbers should be assigned
 b. Produce undergoes sorting/grading and is placed into totes
 c. GTIN is assigned to produce
 d. GLN identifies Field/Greenhouse (harvest location)
 e. Produce totes are taken to Cooling Facility/Packing House owned by Farm/Greenhouse
f. GLN identifies Cooling Facility/Packing House

2. Produce undergoes cooling/washing – Cooling CTE
 a. Packing house tests produce for freshness/disease and rinse/washes produce

3. Produce is sorted/graded and placed into cases – Initial Packing CTE
 a. GTIN and TLC are assigned and encoded in a data carrier
 b. Packing House is identified as the TLC Source with a GLN

4. Produce is packed for transport in cases and/or pallets and shipped to Re-packer (Processor) – Shipping CTE
 a. GLN identifies Re-packer (Processor)
 b. Produce GTIN + TLC (assigned in step 3) quantities are recorded
 c. SCCS can be assigned and is encoded in a data carrier if pallets are created

5. Produce is received at Re-packer (Processor) – Receiving CTE
 a. GLN identifies Re-packing Facility
 b. Produce GTINs + TLC (assigned in step 3) quantities are captured

6. Produce is combined to make Ready-to-Eat Salad at Re-packer (Processor) – Transformation CTE
 a. New GTIN + TLC is assigned when Read-to-Eat Salad are created
 b. Re-packer (Processor) is identified as the TLC source with a GLN

7. Ready-to-Eat Salad is packed for transport and shipped to Distributor – Shipping CTE
 a. GLN identifies Distribution Center/Warehouse
 b. Ready-to-Eat Salad GTIN + TLC (assigned in step 6) quantities are recorded
 c. SSCSs can be assigned and encoded in a data carrier on new pallets

8. Ready-to-Eat Salad is received at Distributor – Receiving CTE
 a. GLN identifies Distribution Center/Warehouse
 b. GTINs + TLC (assigned in step 6) quantities are captured and recorded

9. Distributor picks cases to create a shipment to Restaurant/Store – Shipping CTE
 a. GLN identifies Restaurant/Store
 b. GTINs + TLC (assigned in step 6) quantities are captured and recorded
 c. SSCSs can be assigned and encoded in a data carrier for new pallets

10. Produce is received by Restaurant/Store – Receiving CTE
 a. GLN identifies Restaurant/Store
 b. Produce GTINs + TLC (assigned in step 6) quantities are captured/recorded

*Note: For retailers, there could be a retailer-owned distribution center prior to the final destination

6.3 Frozen Shrimp Aquaculture Farmed Detailed Process Steps

In the example below, shrimp is harvested from a pond (U.S. FDA defines it as a container) by a broker who is the first receiver (Harvester). The head on shrimp is sorted and size graded (Initial Packing) and a TLC is assigned. The broker sells and transports the sorted shrimp to a processor.
The graded head-on shrimp are shipped to the Processor who receives them. Commingling and Transformation occur at the Processor (head removed, shelled, deveined, size graded). A new TLC is assigned, and the Processor is the TLC Source.

If additional processing is required by a secondary processor (freezing and packaging) another Transformation occurs. The secondary processor receives and keeps a record of the primary processor’s TLC and lot code source. After freezing into bulk (Transformation) the secondary processor may assign a new TLC if the packaging is done later. When the secondary processor packages the frozen shrimp as a finished product (Transformation) a new traceability lot code is assigned, and the secondary processor becomes the TLC source.

The secondary processor sells the frozen packaged shrimp (Shipper) to an importer who places the product into a third-party cold storage (3PL). The 3PL (Receiver) shall not assign a new TLC and keeps the secondary processor as the TLC source. The importer sells the frozen shrimp to a retail or food service distributor and the product is shipped from the 3PL (Shipper). The retail or food service distributor (both Receiver and Shipper cannot change the TLC and keeps the TLC Source as a record). When the Distributor ships the product, they pass along the TLC and TLC Source. The restaurant or a grocery store (Final Receiver) keeps the passed along TLC and TLC source as a record.

Figure 6-3 Frozen Shrimp Aquaculture Farmed Detailed Process Flow

- **RAW SHRIMP**
 - Pond Operator
 - Preprocessor (Optional step)
 - Pond
 - 1. Harvest
 - 2. Initial Packing (2CT1 and lot code is assigned)
 - 3. Shipping

- **INTERMEDIATE FORM**
 - Processor
 - Plant
 - Cold Storage Warehouse
 - Plant/Warehouse
 - 4. Receive
 - 5. Transform (New GTIN and lot code assigned)
 - 6. Shipping
 - 7. Receive
 - 8. Shipping
 - 9. Receive
 - 10. Transform (New GTIN and lot code assigned)
 - 11. Shipping

- **PACKAGED FROZEN SHRIMP**
 - Operator
 - Retailer
 - Distributor
 - Redistributor
 - Restaurant
 - Store
 - Distribution Center
 - Redistribution Centers
 - Distribution Hub
 - Cold Storage Warehouse
 - 12. Receive
 - 13. Shipping
 - 14. Receive
 - 15. Shipping
 - 16. Receive
 - 17. Shipping

Note: The fishing vessel supply chain process requires different CTEs.

Note: For retailers, there could be a retailer-owned distribution center prior to the final destination.
1. Shrimp are harvested from grow-out ponds by the pond operator or subcontractor - Harvest CTE
 a. Shrimp totes can be comingled with similar items from other ponds (containers); lot/batch numbers can be assigned but are not required for FSMA 204.
 b. GLN identifies the pond (container) as the harvest location

2. Shrimp are sorted/graded and placed into totes or vats – Initial Packing CTE
 a. GTIN and TLC are assigned and can be encoded in a data carrier
 b. The processor is identified as the TLC Source with a GLN

3. Shrimp is shipped to Processor – Shipping CTE
 a. Ship to GLN identifies Processor
 b. Shrimp GTINs + TLC (assigned in step 2) quantities are recorded

4. Shrimp is received at Primary Processor – Receiving CTE
 a. GLN identifies Primary Processor
 b. Shrimp GTINs + TLC (assigned in step 2) quantities are recorded/captured

5. Shrimp may be commingled (multiple farms), head removed, and may have shell removed and/or be deveined to create an intermediate product that is packed in totes/vats – Transformation CTE
 a. New GTIN + TLC is assigned to shrimp (intermediate product)
 b. The processor is identified as a TLC source with a GLN
 c. Note: Shrimp may be sent to a secondary processor for freezing and packaging if not done by the primary processor

6. Shrimp is sent or shipped to 3rd Party (or Owned) Cold Storage Warehouse – Shipping CTE
 a. Ship to GLN identifies 3rd Party (or owned) Cold Storage
 b. Shrimp GTIN + TLC (assigned in step 5) quantities are recorded
 c. SSCCs can be assigned and encoded in a data carrier on new pallets
 d. Shipping Containers clear customs during import (if crossing international borders)

7. The 3rd Party (or owned) Cold Storage receives product from the processing plant - Receiving CTE
 a. Ship to GLN identifies 3rd Party (or owned) Cold Storage
 b. GTINs + TLC (assigned in step 5) quantities are recorded/captured
 c. Note: Alternatively, the product could bypass 3rd Party Cold Storage (steps 6 & 7) and head directly to Secondary Processor (steps 8 -11)

8. 3rd Party Cold Storage ships product out from Cold Storage Warehouse to Secondary Processor - Shipping CTE
 a. Ship to GLN identifies Secondary Processor
 b. GTINs + TLC (assigned in step 5) quantities are recorded/captured
 c. SSCCs can be assigned to new pallets and encoded in data carriers

9. Shrimp is received at the Secondary Processor – Receiving CTE
 a. GLN identifies Secondary Processor (Traceability Lot Code Source)
 b. GTINs + TLC (assigned at step 5) quantities are captured and recorded

10. The secondary Processor processes the intermediate product into cases of finished goods frozen shrimp - Transformation CTE
a. New GTIN + TLC is assigned to finished goods frozen shrimp
b. The secondary Processor is identified as the TLC source
c. GTINS + TLC quantities are recorded
d. GTINs + TLC can be encoded in a data carrier
e. Secondary processor packs cases of finished goods frozen shrimp on pallets
f. SSCCs can be assigned to new pallets and can be encoded in a data carrier

11. The secondary Processor sends pallets to Cold Storage Warehouse - Shipping CTE
 a. Ship to GLN identifies external Cold Storage Warehouse
 b. GTINs + TLC (assigned at step 10) quantities are captured and recorded
 c. SSCCs can be assigned and encoded in a data carrier on new pallets

12. Cold Storage Warehouse receives the pallets from Secondary Processor - Receiving CTE
 a. GLN identifies external Cold Storage Warehouse
 b. GTINs + TLC (assigned at step 10) quantities are captured and recorded

13. Pallets (mixed or homogenous) are shipped by the 3rd Party (or Owned) Cold Storage to the Re-Distribution Center - Shipping CTE
 a. Ship to GLN identifies Re-Distribution Center
 b. GTINs + TLC (assigned at step 10) quantities are captured and recorded
 c. SSCCs can be assigned and encoded in a data carrier for new pallets

14. Product is received into inventory at the Re-Distribution Center – Receiving CTE
 a. GLN identifies Re-Distribution Center
 b. GTINs + TLC (assigned at step 10) quantities are captured and recorded

15. Pallets (mixed or homogenous) or cases are shipped by the Distribution Center (Foodservice/Retail) - Shipping CTE
 a. GLN identifies Distribution Center
 b. GTINs + TLC (assigned at step 10) quantities are captured and recorded
 c. Cases can be unpacked from pallets and repacked with other items onto mixed pallets
 d. SSCCs can be assigned and encoded in a data carrier for new pallets

16. Pallets (mixed or homogenous) or cases are received by the Distribution Center – Receiving CTE
 a. GLN identifies the Distribution Center
 b. GTINs + TLC (assigned at step 10) quantities are captured and recorded

17. Distribution Center picks cases to create a shipment to Restaurant/Store – Shipping CTE
 a. Ship to GLN identifies Restaurant/Store
 b. GTINs + TLC (assigned at step 10) quantities are captured and recorded
 c. SSCCs can be assigned to new pallets and encoded in a data carrier

18. Pallets or Cases are received by Restaurant/Store – Receiving CTE
 a. GLN identifies Restaurant/Store
 b. GTINs + TLC (assigned at step 10) quantities are captured and recorded
Note: For retailers, there could be a retailer-owned distribution center prior to the final destination.

6.4 Peanut Butter Crackers Detailed Process Steps

In the final example, below, peanut butter crackers are created. First, the peanut butter/paste is manufactured, and TLCs are assigned by the primary peanut butter processor. Peanut butter/paste is transported to a 3rd party warehouse in tankers, where it is received. The 3rd party warehouse ships peanut butter/paste to a distributor/importer or directly to a multi-ingredient manufacturer. After receipt, the multi-ingredient manufacturer maintains existing TLCs of all ingredients used to make the peanut butter crackers and creates a new TLC for the finalized product (the peanut butter crackers), which would be considered initial packing. The peanut butter crackers are shipped to a retailer/vending machine/restaurant.

Figure 6-4 Peanut Butter Cracker Process Flow

1. Peanut butter/paste is manufactured by Primary Peanut Butter Processor – Transformation CTE
 a. GLN identifies Primary Peanut Butter Processor
 b. GTIN + TLC is assigned
2. Peanut butter/paste is put into tankers and shipped to 3rd Party/Warehouse Owner – Shipping CTE
 a. GLN identifies Storage Facility
 b. GTINs + TLC (assigned in step 1) quantities are recorded
 c. If several lots are mixed into one tanker new TLCs are assigned – Transformation CTE
 d. SSCC (Tanker ID) is recorded
3. Storage Facility receives Peanut Butter/paste into inventory – Receiving CTE
 a. GLN identifies Storage Facility
b. GTINs + TLC (assigned in step 1 (or step 2 if transformed)) quantities are recorded
 c. SSCC (Tanker ID) is recorded

4. 3rd Party/Warehouse Owner ships peanut butter/paste to Distributor/Importer or directly to Multi-Ingredient Manufacturer – Shipping CTE
 a. GLN identifies Distributor Center or Manufacturing Plant
 b. GTINs + TLC (assigned in Step 1 (or step 2 if transformed)) quantities are recorded
 c. SSCC (Tanker ID) is recorded

5. Peanut butter/paste is received into Inventory by Distribution Center or Manufacturing Plant – Receiving CTE
 a. GLN identifies Distribution Center or Manufacturing Plant
 b. GTINs + TLC (assigned in step 1 (or step 2 if transformed)) quantities are recorded
 c. SSCC (Tanker ID) is recorded
 d. If the Distributor mixes peanut butter/paste lot codes into a different tanker new TLCs are assigned; Distributor would be identified as TLC Source with a GLN

6. Distributor/Importer ships peanut butter/paste to Multi-Ingredient Manufacturer – Shipping CTE
 a. GLN identifies Manufacturing Plant
 b. GTIN + TLC (assigned in step 1 (or step 2, 5 if transformed)) quantities are recorded
 c. SSCC (Tanker ID) is recorded

7. Multi-Ingredient Manufacturer receives peanut butter/paste tankers into inventory – Receiving CTE
 a. GLN identifies Manufacturing Plant
 b. GTIN + TLC (assigned in Step 1 (or step 2, 5 if transformed)) quantities are recorded
 c. SSCC (Tanker ID) is recorded

8. Peanut Butter Paste is mixed with other ingredients in Peanut Butter Mixing Area at Manufacturing Plant – Transformation CTE
 a. GLN identifies Manufacturing Plant (Peanut Butter Mixing Area)
 b. New GTIN + TLC is assigned to the new peanut butter product
 c. The peanut butter Mixing Area at Manufacturing Plant is identified as the TLC source with a GLN

9. Cracker and Peanut Butter are put together in transformation lines (different lot codes) at Manufacturing Plant – Transformation CTE
 a. GLN identifies Manufacturing Plant (transformation line)
 b. Peanut Butter Sandwich Crackers are packaged individually
 c. New GTIN + TLC is assigned to Peanut Butter Sandwich Crackers
 d. GTIN + TLC is encoded in a data carrier on individual package
 e. Individual Peanut Butter Sandwich Crackers are packed into cases
 f. New GTIN + TLC is assigned to the Peanut Butter Sandwich Cracker case
 g. Transformation Line at Manufacturing Plant is identified as TLC Source with a GLN
 h. GTIN + TLC (assigned in step 9) is encoded in a data carrier on the case

10. Multi-Ingredient Manufacturer ships peanut butter cracker pallets to Distribution Center (contracted by Retailer or Restaurant) – Shipping CTE
a. GLN identifies Distribution Center
b. GTIN + TLC (assigned in step 9) quantities are recorded/captured
c. SSCCs can be assigned to new pallets and encoded in data carriers

11. Peanut butter cracker pallets are received into inventory by Distribution Center – Receiving CTE
 a. GLN identifies Distribution Center
 b. GTIN + TLC (assigned in step 9) quantities are recorded/captured

12. Distribution Center ships mixed pallets to retailer/vending machine/restaurant – Shipping CTE
 a. GLN identifies retailer/vending machine/restaurant
 b. GTIN + TLC (assigned in step 9) quantities are recorded
 c. The Distributor can re-palletize peanut butter crackers onto mixed pallets (with other products or lot codes)
 d. SSCCs can be assigned to new pallets and encoded in data carriers

13. Peanut butter crackers (mixed pallets- could have other products) are received into inventory by Retailer/Vending Machine/Restaurant – Receiving CTE
 a. GLN identifies retailer/vending machine/restaurant
 b. GTIN + TLC (assigned in step 9) quantities are recorded/captured

✅ Note: For retailers, there could be a retailer-owned distribution center prior to the destination
7 Appendix C - Overview of GS1 System of Standards to Support Traceability

From an information management point of view, supply chain applications like serial-level management and item-level traceability require all parties to systematically associate the physical flow of products with the flow of information about them. This is best attained by deploying a common business language within the framework of a comprehensive standards system. The GS1 System is such a system, providing a comprehensive platform for companies to identify products and other business entities, capture supply chain data, and share data with trading partners.

The GS1 System of Standards encompasses identification standards, data standards, automatic identification data capture (AIDC) standards, and data communication standards. The table below summarizes some of the GS1 Standards that support item-level traceability.

Table 2-1 GS1 Standards Supporting Item-Level Traceability

<table>
<thead>
<tr>
<th>GS1 STANDARDS SUPPORTING ITEM-LEVEL TRACEABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification Standards</td>
</tr>
<tr>
<td>Trade Items</td>
</tr>
<tr>
<td>Locations & Trading Partners</td>
</tr>
<tr>
<td>Logistics Units</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>AIDC Standards</td>
</tr>
<tr>
<td>GS1 Barcodes</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>GS1 EPC/RFID</td>
</tr>
<tr>
<td>Data Standards</td>
</tr>
<tr>
<td>Master Data:</td>
</tr>
<tr>
<td>GS1 Navigator</td>
</tr>
<tr>
<td>Business Message Standard</td>
</tr>
<tr>
<td>Party Business Messaging Standard</td>
</tr>
<tr>
<td>Sharing & Communication Standards and Tools</td>
</tr>
<tr>
<td>Master Data:</td>
</tr>
<tr>
<td>Global Data Synchronization Network (GDSN)</td>
</tr>
<tr>
<td>GS1 US Data Hub</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Proprietary Statement
This document contains proprietary information of GS1 US. Such proprietary information may not be changed for use with any other parties for any other purpose without the expressed written permission of GS1 US.

Improvements
Improvements and changes are periodically made to publications by GS1 US. All material is subject to change without notice. Please refer to GS1 US website for the most current publication available.

Disclaimer
Except as may be otherwise indicated in specific documents within this publication, you are authorized to view documents within this publication, subject to the following:

1. You agree to retain all copyright and other proprietary notices on every copy you make.
2. Some documents may contain other proprietary notices and copyright information relating to that document. You agree that GS1 US has not conferred by implication, estoppels, or otherwise any license or right under any patent, trademark, or copyright (except as expressly provided above) of GS1 US or of any third party.

This publication is provided "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Any GS1 US publication may include technical inaccuracies or typographical errors. GS1 US assumes no responsibility for and disclaims all liability for any errors or omissions in this publication or in other documents which are referred to within or linked to this publication. Some jurisdictions do not allow the exclusion of implied warranties, so the above exclusion may not apply to you.

Several products and company names mentioned herein may be trademarks and/or registered trademarks of their respective companies. GS1 US does not, by promulgating this document on behalf of the parties involved in the creation of this document, represent that any methods, products, and/or systems discussed or recommended in the document do not violate the intellectual property rights of any third party. GS1 US has not performed a search to determine what intellectual property may be infringed by an implementation of any strategies or suggestions included in this document. GS1 US hereby disclaims any liability for any party's infringement of intellectual property rights that arise as a result of any implementation of strategies or suggestions included in this document.

This publication may be distributed internationally and may contain references to GS1 US products, programs, and services that have not been announced in your country. These references do not imply that GS1 US intends to announce such products, programs, or services in your country.

GS1 US shall not be liable for any consequential, special, indirect, incidental, liquidated, exemplary, or punitive damages of any kind or nature whatsoever, or any lost income or profits, under any theory of liability, arising out of the use of this publication or any content herein, even if advised of the possibility of such loss or damage or if such loss or damage could have been reasonably foreseen.

GS1 US HEREBY DISCLAIMS, AND YOU HEREBY EXPRESSLY RELEASE GS1 US FROM, ANY AND ALL LIABILITY RELATING TO YOUR COMPLIANCE WITH REGULATORY STANDARDS AND LAWS, INCLUDING ALL RULES AND REGULATIONS PROMULGATED THEREUNDER. GS1 US MAKES NO WARRANTIES OF ANY KIND RELATING TO THE SUITABILITY OF THE GS1 STANDARDS AND THE SPECIFIC DOCUMENTS WITHIN THIS PUBLICATION TO COMPLY WITH ANY REGULATORY STANDARDS, LAWS, RULES, AND REGULATIONS. ALL INFORMATION AND SERVICES ARE PROVIDED "AS IS."

*GS1 US employees are not representatives or agents of the U.S. U.S. FDA, and the content of this publication has not been reviewed, approved, or authorized by the U.S. U.S. FDA. The following information contained herein is for informational purposes only as a convenience and is not legal advice or a substitute for legal counsel. GS1 US Inc. assumes no liability for the use or interpretation of the information contained herein.

No Liability for Consequential Damage
In no event shall GS1 US or anyone else involved in the creation, production, or delivery of the accompanying documentation be liable for any damages whatsoever (including, without limitation, damages for loss of business profits, business interruption, loss of business information, or other loss) arising out of the use of or the results of use of or inability to use such documentation, even if GS1 US has been advised of the possibility of such damages.

IAPMO
In this publication the letters "UPC" are used solely as an abbreviation for the "Universal Product Code," which is a product identification system. They do not refer to the UPC®, which is a federally registered certification mark of the International Association of Plumbing and Mechanical Officials ("IAPMO") to certify compliance with the Uniform Plumbing Code as authorized by IAPMO.

*If applicable