THE GLOBAL LANGUAGE OF BUSINESS

CHECK DIGIT CALCULATOR

HOW TO CALCULATE A DIGIT CHECK MANUALLY

ID KEY FORMAT	DIGIT POSITIONS																	
GTIN-8											N_{1}	N_{2}	N_{3}	N_{4}	N_{5}	N_{6}	N_{7}	N8
GTIN-12							N_{1}	N_{2}	N_{3}	N_{4}	N_{5}	N_{6}	N_{7}	N_{8}	N_{9}	N_{10}	N_{11}	N_{12}
GTIN-13						N_{1}	N_{2}	N_{3}	N_{4}	N_{5}	N_{6}	N_{7}	N_{8}	N_{9}	N_{10}	N_{11}	N_{12}	N_{13}
GTIN-14					N_{1}	N_{2}	N_{3}	N_{4}	N_{5}	N_{6}	N_{7}	N_{8}	N_{9}	N_{10}	N_{11}	N_{12}	N_{13}	N_{14}
SSCC	N_{1}	N_{2}	N_{3}	N_{4}	N_{5}	N_{6}	N_{7}	N_{8}	N_{9}	N_{10}	N_{11}	N_{12}	N_{13}	N_{14}	N_{15}	N_{16}	N_{17}	N_{18}

STEP 1: Multiply value of each position by

	x 3	x 1	x 3	x 1	x 3	x 1	x 3	x 1	x 3	x 1	x 3	x 1	x 3	x 1	x 3	x 1	x 3	

STEP 2: Add results together to create sum
STEP 3: Subtract the sum from the nearest equal or higher multiple of ten $=$ CHECK DIGIT

THE FOLLOWING TABLE GIVES AN EXAMPLE
TO ILLUSTRATE HOW A CHECK DIGIT IS CALCULATED

POSITIONS	N_{1}	N_{2}	N_{3}	N_{4}	N5	N_{6}	N7	N_{8}	N9	N_{10}	N_{11}	N_{12}	N_{13}
NUMBER WITHOUT CHECK DIGIT	6	2	9	1	0	4	1	5	0	0	2	1	-
STEP 1: Multiply	x	\times	x	x	x	x	x	x	x	x	x	x	-
By	1	3	1	3	1	3	1	3	1	3	1	3	-
STEP 2: Add results	$=$	=	=	$=$	=	=	=	=	=	=	=	=	-
to create sum	6	6	9	3	0	12	1	15	0	0	2	3	$=57$
STEP 3: Subtract the sum from the nearest equal or higher multiple of ten = 60-57 = 3 (CHECK DIGIT)													
NUMBER WITH CHECK DIGIT	6	2	9	1	0	4	1	5	0	0	2	1	3

EXAMPLE: GTIN-12 (U.P.C.)

The Check Digit for a GTIN-12 (U.P.C.) ID Number is figured using the standard modulo calculation.

Here is how it works:

NUMBERING STRUCTURE POSITIONS

STEP ONE:

Suppose you want to find the Check Digit for the GTIN-12 (U.P.C.)
Number 61414121022. Set up a table with 12 columns, and put the number 61414121022 into Positions One through Eleven. Position Twelve will be blank because it is reserved for the Check Digit.

STEP TWO:

Add the numbers in Positions One, Three, Five, Seven, Nine, and Eleven:
$(6+4+4+2+0+2=18)$

STEP THREE:

Multiply the result of Step Two by three: $(18 \times 3=54)$

STEP FOUR:

Add the numbers in Positions Two, Four, Six, Eight, and Ten: $(1+1+1+1+2=6)$

STEP FIVE:

Add the results of Step Three and Step Four: (54+6=60)

STEP SIX:

The Check Digit is the smallest number needed to round the result of Step Five up to the nearest multiple of 10 . In this example, the Check Digit is 0 .

