
©2010 RosettaNet. All Rights Reserved.

Message Control and Choreography (MCC)

-

Profile-Web Services (WS)

Release 11.00.00A

Specification Information

Name MCC – Profile- Web Services

Publication Date 1 June 2010

Version Identifier Release 11.00.00A

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 2 1 June 2010

Table of Content

1. Document Management .. 4

1.1 Legal Disclaimer .. 4

1.2 Copyright ... 4

1.3 Trademarks .. 4

1.4 Acknowledgments ... 5

1.5 Related Documents ... 5

1.6 Document Version History .. 5

1.7 Document Purpose .. 5

2. Introduction .. 6

3. Web Service-Based B2Bi ... 7

3.1 Abstract and Concrete WSDL Definition .. 8

3.2 Point-2-Point Communication .. 9

3.3 Protocol Layering ... 10

3.4 WS-* standards ... 11

3.5 WS-I .. 11

3.6 WS-BPEL .. 11

3.7 DTD-based PIPs ... 12

4. Context of this specification .. 14

4.1 Relation to Single Business Document PIP Template 14

4.2 Relation to MMS WS profile .. 15

5. Single Business Document PIP Definition and Requirements 17

6. Concrete Requirements Defined in the Template Document 18

6.1 Functional Requirements ... 18

6.1.1 Parties Involved ... 18

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 3 1 June 2010

6.1.2 Business Document ... 18

6.1.3 Business State Alignment Features .. 18

6.1.4 PIP Execution Outcome ... 20

6.2 B2Bi Quality of Service Features ... 20

6.3 Other Non-functional Requirements .. 21

7. PIP Parameterization and Execution Control .. 22

7.1 PIP Property Parameters ... 23

7.2 Further PIP execution parameters ... 24

8. Realization ... 26

8.1 Execution Contexts and MEPs .. 26

8.2 Realization of QoS (Strict execution context) .. 26

8.3 Control flow (Strict execution context) .. 29

8.3.1 Asynchronous Interaction .. 30

8.3.2 Synchronous Interaction .. 34

8.3.3 PIP Instance Identification and Message Correlation 36

9. WSDL Mapping Rules ... 40

9.1 Messages .. 40

9.1.1 Importing Message Types .. 40

9.1.2 Defining WSDL Messages ... 41

9.2 Operations .. 43

9.2.1 Operations Required for Mapping Message Exchange Patterns 46

10. Use Cases of PIP Definition (Strict execution context) 51

10.1 Use Case 1 – Full features .. 51

10.2 Use Case 2 – Business Document Only ... 55

11. Use Case realization (Strict execution context) .. 58

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 4 1 June 2010

1. Document Management

1.1 Legal Disclaimer

RosettaNet, its members, officers, directors, employees, or agents shall not be liable
for any injury, loss, damages, financial or otherwise, arising from, related to, or
caused by the use of this document or the specifications herein, as well as associated
guidelines and schemas. The use of said specifications shall constitute your express
consent to the foregoing exculpation.

1.2 Copyright

©2010 RosettaNet. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the
inclusion of this copyright notice. Any derivative works must cite the copyright
notice. Any public redistribution or sale of this publication or derivative works
requires prior written permission of the publisher.

1.3 Trademarks

RosettaNet, Partner Interface Process, PIP and the RosettaNet logo are trademarks
or registered trademarks of "RosettaNet," a non-profit organization. All other
product names and company logos mentioned herein are the trademarks of their
respective owners. In the best effort, all terms mentioned in this document that are
known to be trademarks or registered trademarks have been appropriately
recognized in the first occurrence of the term.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 5 1 June 2010

1.4 Acknowledgments

This document has been prepared by RosettaNet (http://www.rosettanet.org/) from
requirements gathered during the Milestone Program and in conformance with the
methodology. Listed below are the legal entities that contributed to the design and
development of this PIP.

Axway Cisco

DHL IBM

KJC Solutions Oracle

OASIS Software AG

Tibco University Bamberg

Vienna University of Technology

1.5 Related Documents
• MCC Single Business Document PIP Template R11.00.00A

• MMS Web Services Profile V11.00.01

1.6 Document Version History

Version Date Description

Release 11.00.00A 1 June 2010 Released Version

1.7 Document Purpose

The purpose of the document is to explain the structure, the association between
objects, the content of objects and the definition for single elements to a non-
technical audience.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 6 1 June 2010

2. Introduction

Message Control and Choreography (MCC) phase 1 specifies the execution of
1-Action (single business document) PIPs using standard messaging technologies,
thereby providing an alternative to using the RosettaNet Implementation Framework
(RNIF). The “MCC Phase 1 – Single Business Document PIP Template” (the template
document in the following) motivates the use of standard messaging technologies,
sets the scope for MCC phase 1, and defines common criteria for messaging
technology profiles.
This document specifies how to use Web services for performing 1-Action PIPs.
Section 3 describes elementary characteristics of Web service based Business-to-
Business integration (B2Bi) that influenced the development of this specification and
set the background for this specification. Section 4 describes the relation of MCC
phase 1 WS profile to “MCC Phase 1 – Single Business Document PIP Template” and
to what extent the existing “RosettaNet MMS WS profile” is reused. Section 5, which
is directly taken from the template document, defines core MCC concepts. Section 6
repeats the requirements defined in the template document and section 7 describes
how PIPs can be parameterized. Section 0 specifies the realization of PIPs. Section 9
defines how this specification’s contents map to WSDL interface descriptions. Section
10 recites use case definitions from the template document and section 11 discusses
the corresponding implementation.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 7 1 June 2010

3. Web Service-Based B2Bi

Web services are an XML-based interface technology that separates the functionality
of a service from its implementation. A Web service’s interface is described using the
Web service description language (WSDL). A WSDL interface of a service defines the
requirements for the so-called service provider (that implements the WSDL
interface) and the assurances a service consumer (that uses a WSDL interface
implementation) can rely on. Thus, Web services technology specifies what happens
during communication between service provider and service consumer and leaves
out the details of internal processing of the communication partners. Web services
enable decoupling of communication partners by providing a concise description of all
relevant communication requirements. Leveraging this potential for decoupling
allows for choosing platforms and implementation languages for service consumers
and providers independently.

This document is aligned with the goal of decoupling PIP implementers’ information
systems as far as possible and allowing for reuse of PIP implementations. Instead of
specifying the details of internal behavior of RosettaNet implementers, the MCC
phase 1 Web services profile only defines requirements for communication.
Some of these requirements concern the realization of B2Bi over the Internet which
was not reflected sufficiently in the early Web service specifications, most notably,
stateful interactions and Quality-of-Service (QoS). The use of WS-BPEL as major
technology for implementing stateful interactions and various WS-* standards for
realizing QoS is assumed, but not mandated.

Therefore, this specification does rely on basic Web service specifications like WSDL
and SOAP, Web service extensions like WS-ReliableMessaging and WS-Security,
orchestration technology (WS-BPEL) as well as interoperability definitions like
WS-I Basic profile and WS-I Reliable Secure Profile.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 8 1 June 2010

3.1 Abstract and Concrete WSDL Definition

“A WSDL document defines services as collections of network endpoints, or ports.
In WSDL, the abstract definition of endpoints and messages is separated from their
concrete network deployment or data format bindings. This allows the reuse of
abstract definitions: messages, which are abstract descriptions of the data being
exchanged, and port types which are abstract collections of operations. The
concrete protocol and data format specifications for a particular port type constitutes
a reusable binding. A port is defined by associating a network address with a
reusable binding, and a collection of ports define a service.” (WSDL 1.1)

An abstract WSDL definition that is not tied to a particular service implementation
comprises the following components:

• Type definitions using XML Schema technology.

• Message definitions for composing messages from types.

• PortType definitions for grouping the exchange of messages in operations.

A concrete WSDL definition extends an abstract WSDL definition by the following
components:

• A Protocol Binding definition that describes how the messages of a portType’s
operations are exchanged using a concrete protocol.

• Port definitions for specifying which network addresses can be used for
consuming a service.

• A Service definition for bundling one or more ports for the same service.

Port and Service definitions have to be specified by Rosettanet implementers on a
per PIP basis. The MCC phase 1 WS profile therefore does not make any assumptions
about Port and Service definitions and only defines requirements for protocol
bindings. Conversely, this specification makes strict requirements for the
components of abstract WSDL definitions for performing PIPs.

Thus, this specification defines abstract requirements that then can be tailored to the
specific systems environment of RosettaNet implementers.

This profile does not specify details of WSDL Port, Service or Protocol Binding
definitions. Protocol Bindings are constrained by requirements.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 9 1 June 2010

3.2 Point-2-Point Communication

Consuming a Web service requires knowledge (statically or at runtime) of an
endpoint that provides the implementation of an abstract service description. At the
application level, communication directly takes place between the service consumer
and the service provider. This amounts to a Point-2-Point communication model as
depicted in Figure 1.

Figure 1: Point-to-Point Communication

In a Point-2-Point model QoS requirements may be implemented on the
communication channel, e.g., using WS-Security, as well as by the communicating
applications, e.g., using digital signatures contained in the payload. The MCC phase
1 WS specification assumes a Point-2-Point communication model.

Therefore, if two partners decide to apply an End-2-End communication model with
intermediaries as depicted in Figure 2, then the implications of Point-2-Point
communication have to be adapted accordingly. In particular, this specification’s
requirements for communication channel level QoS realization have to be adapted.

This profile supports Point-2-Point communication only.

Figure 2: End-to-End Communication

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 10 1 June 2010

3.3 Protocol Layering

Web service-based communication allows for different types of protocols. For full
conformance with this specification, Web services must be bound to SOAP via HTTP.
This results in the protocol stack depicted in Figure 3.

This profile mandates the use of SOAP via HTTP for Web service communication.

Figure 3: Protocol Stack for WS-based PIP Implementation

The highest layer is the PIP Protocol, and specifies the sequence of Web service calls
that are needed for implementing a PIP. This may concern WS calls needed for
alignment of business state as well as control messages signaling protocol exceptions
like timeouts. Each Web service operation is bound to SOAP communication and may
result in a sequence of SOAP level messages depending on the configuration of the
SOAP layer. For example, reliable delivery of PIP level messages may require the
exchange of several SOAP level messages. Each SOAP message will be exchanged
using HTTP which in turn has to be bound to TCP/IP as transport protocol. In the
subsequent sections, messages and functionalities may be associated with the layers
of the WS-based PIP protocol stack depicted in Figure 3.

• A message is said to be a PIP level message if it is defined as input or output
of a PIP WSDL operation. Functionalities are said to be realized at the PIP
level if they are realized by the protocol machines implementing the PIP
protocol. The PIP level corresponds to what is denoted the “application level”
in general.

• A message is said to be a SOAP level message if its format conforms to the
SOAP specification. SOAP level messages may be exchanged for transmitting
PIP level messages as payload and for controlling the exchange of PIP level
messages. Functionalities are said to be realized at the SOAP level if they are
realized by SOAP processors. The SOAP level corresponds to what is denoted
the “messaging level” in general.

• A message is said to be a HTTP/TCP level message if its format conforms to
the HTTP/TCP specification. This document does not distinguish between the
HTTP and TCP layer which actually are separate. Therefore, HTTP and TCP
level messages and functionalities will be referred to as transport level
messages and functionalities.

While full conformance with this specification requires support for the protocol stack

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 11 1 June 2010

depicted in Figure 3 RosettaNet implementers are free to adopt different
messaging/transport protocols by porting requirements for the respective protocol
layers accordingly.

3.4 WS-* standards

WS-* is a non-official, but widely used term denoting Web service related standards
that provide advanced features such as QoS. Frequently, these standards define
functionality in terms of SOAP-based protocols.

This specification makes use of the following WS-* standards:

• WS-ReliableMessaging 1.2

• WS-Security 1.1

• WS-SecureConversation 1.4

• WS-Trust 1.4

• WS-Addressing 1.0

3.5 WS-I

Interoperability is crucial for reuse of PIP implementations and therefore of
paramount importance for the RosettaNet community. The following profiles of the
Web Service Interoperability Organization therefore must be followed:

• WS-I Basic Profile 1.1 (http://www.ws-i.org/Profiles/BasicProfile-1.1.html)

• WS-I Basic Security Profile 1.1 (http://www.ws-
i.org/Profiles/BasicSecurityProfile-1.1.html)

Moreover, adherence to the following WS-I specifications is recommended once they
become final:

• WS-I Basic Profile 1.2

• WS-I Basic Profile 2.0

• WS-I Reliable Secure Profile 1.0

3.6 WS-BPEL

This specification acknowledges the importance of BPEL as major implementation
technology for stateful Web service interactions. Therefore, realization of this
specification’s requirements using WS-BPEL is a major design goal although
RosettaNet implementers are free in choosing a Web service implementation
technology.

This profile does NOT require the use of WS-BPEL for implementing PIPs.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 12 1 June 2010

In order to allow for WS-BPEL based implementations, full conformance to MCC
phase 1 WS profile mandates the use of WSDL 1.1.

3.7 DTD-based PIPs

WSDL Web service interface definitions rely on XML schema (XSD) for defining
message types. Use of DTD-based PIPs is enabled by equivalent XSD definitions that
accompany DTD-based PIPs. Note that these XSD definitions for DTD-based PIPs are
purely technical conversions of DTD-based PIPs’ monolithic message structure. This
is different from the modular message header structure available for XSD-based PIPs
labeled with version 11.00.00 and onwards. In order to separate modular XSD PIP
definitions from XSD representations of DTD-based PIPs, the term conversion XSD
will be used in this document to refer to the monolithic equivalent of a DTD PIP
definition.

Conversion XSDs define the same set of XML documents as the corresponding DTDs
except for the following differences:

• Conversion XSD PIP definitions define an XML namespace for the XML type
definitions.

• Conversion XSD PIP definitions may be more restrictive in enumerating the
admissible values for PIP code lists.

This enables reuse of business document processing logic with little to no rework.
Consider that Web service stack implementations typically do not perform XML
schema validation upon operation parameters or at least allow for turning off that
feature. Hence, reuse of DTD-based software modules may be as easy as writing a
wrapper for the module that exchanges the XML document definition header in
business document instances. For example, such a wrapper would replace the XML
schema-based XML document definition header by a DTD-based XML document
definition header for a business document instance submitted to the DTD-based
software module.

For clarification, Figure 4 exemplifies the use of a conversion XSD in a Web service-
based integration scenario. In this scenario, the PIP responder (as defined in the
template document) provides a Web service interface for consuming business
documents in its gateway or business service interface. This WSDL interface uses a
conversion XSD to import the message type definition of the DTD-based PIP. The
WSDL definition is processed by a Web service stack (WS-Stack) implementation for
providing the actual service endpoint. This service endpoint can be used by the
integration partner for delivering business documents that conform to the type
definition expressed in the conversion XSD. This business document is packaged
within a SOAP envelope. Whether or not the integration partner used the PIP’s DTD
or conversion XSD for creating the business document is transparent to the PIP
responder. Incoming calls are processed by the provider gateway such that the SOAP
message container is stripped off the business document and the actual content is
delivered to the PIP responder’s message processor that implements the WSDL file.
Typically, a WS-Stack does not perform XSD validation upon incoming calls or this
functionality can be turned off. Whether or not XML schema validation is performed
upon incoming business documents depends on whether or not the message
processor performs XSD validation. When receiving a message the message

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 13 1 June 2010

processor delegates the business content to a DTD-based legacy application that
uses the PIP’s DTD definitions for type checks. If necessary, the message processor
may replace the XSD-based XML document header definition in the business
document with a DTD-based XML document header definition.
In this scenario, the integration partners are free to require XSD’s advanced
validation features or DTD validation. Depending on this choice, the PIP responder
may want to perform XSD checks in the message processor component or to use
existing DTD based type checks of the DTD-based legacy systems.

Figure 4: Example use of a Conversion XSD PIP business document
definition

In different scenarios, the DTD-based legacy system may also be replaced by an
XSD capable business application.

This profile does NOT make assumptions about whether or not conversion XSD-
based XML content will be processed by a DTD-based application.

Interoperability considerations require that RosettaNet implementers use the official
RosettaNet conversion XSDs for performing DTD-based PIPs with Web service
technology. In exceptional cases, RosettaNet implementers may want to derive
partner-specific conversion XSDs from DTDs. Although this is a valid approach from
a technical point of view, this approach is not recommended.

For full conformance with this profile, officially distributed RosettaNet conversion
XSDs MUST be used for performing DTD-based PIPs with Web service technology.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 14 1 June 2010

4. Context of this specification

This specification (MCC phase 1 Web services profile) governs the execution of PIPs
using Web services technology. It is one of several communication technology
profiles that implement the requirements defined in the “MCC Phase 1 – Single
Business Document PIP Template” (the template document) that sets the scope and
purpose of MCC phase 1. This scope and purpose is similar to the RosettaNet MMS
effort. The next sections clarify the relation of MCC phase 1 WS profile to the
template document as well as to the MMS WS profile.

4.1 Relation to Single Business Document PIP Template

The “MCC Phase 1 – Single Business Document PIP Template” (the template
document) motivates the MCC effort’s goals and partition into phases. Put short,
MCC phase 1 governs the execution of single PIPs while MCC phase 2 specifies the
composition of PIPs and execution of PIP compositions. This distinction is reflected in
two different execution contexts for performing single PIPs. The “strict PIP
execution” context reflects the situation that a PIP may be used within a PIP
composition which imposes hard requirements with respect to mutual agreement
upon the PIP result. Agreement is absolutely necessary for PIP compositions in order
to ensure consistent routing, i.e., that integration partners perform and accept the
same sequence of PIP executions. The “lax PIP execution” context reflects the
situation that a PIP is not to be reused within PIP compositions and therefore has
less stringent requirements with respect to mutual agreement. In particular, PIP
result revisions or error notifications may be acceptable.

A core achievement of MCC phase 1 is configurability of PIPs, i.e., integration
partners are free to adjust several performance controls such as PIP timeouts or
encryption. To separate between a PIP as defined by the RosettaNet community and
partner-customized PIPs, the concepts of PIP template, PIP definition,
customized PIP and PIP instance are defined. Section 5, which is directly taken
from the template document, clarifies the meaning of these concepts.

The template document’s requirements are explicitly restated here with minimal to
no adjustments that reflect Web service specifics:

• The template document’s requirements on state alignment features and PIP
execution outcome are restated in section 6.1.

• The template document’s requirements on QoS are restated in section 0.

• The template document requires the use of ebXML BPSS (ebBP) as format for
representing PIP definitions as well as customized PIPs. Section 7.1 describes
the available PIP configuration options.

• The PIP execution modes defined in the template document are restated in
section 7.2. Note that PIP execution modes are different from PIP
execution contexts in reflecting architectural design parameters of
performing single PIPs instead of distinguishing between whether or not a PIP
may be reused within a PIP composition.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 15 1 June 2010

4.2 Relation to MMS WS profile

MCC phase 1 and MMS are similar in scope. MMS governs the exchange of one
business document and MCC phase 1 deals with performing PIPs. Since RosettaNet
will only support One-Action-PIPs (single business documents) in the future the
difference between MCC phase 1 and MMS is not about the number of business
documents to be exchanged. Having composition of BTAs in mind, MCC phase 1
defines different requirements for business document exchanges as well as different
assumptions about communicating partners:

1. MCC phase 1 distinguishes between lax PIP execution and strict PIP
execution where strict execution imposes hard requirements with respect to
mutual agreement between integration partners upon PIP result.
MMS does not assume as hard agreement requirements and therefore does
not support the strict PIP execution context. This concerns the realization of
QoS properties in a mutual way as well as a stringent definition of control
flow.

2. MCC phase 1 considers that composition of PIPs (MCC phase 2) is inherently
complex. Complexity concerns support for business process instances and
relating business messages to these process instances, support for monitoring
timing constraints as well as support for validation of business messages. This
profile therefore assumes that an MCC capable integration partner provides
an adequate system environment for providing these capabilities. This also
includes the capability of providing an endpoint for communication.
MMS does not assume as many integration partner capabilities. In particular,
MMS’ concept of pure clients allows for integration partners that cannot offer
addressable endpoints. To accommodate pure clients, MMS defines multiple
message exchange patterns (MEPs) that leverage the concept message
pulling for dealing with non-addressable participants.

The discussion shows that MCC phase 1 and MMS are similar in scope but have
different goals. Consequently, MCC requirements and MMS assumptions cannot
freely be combined. In particular, implementing the strict PIP execution context
requirements on MMS assumptions implies inacceptable complexity for integration
partners. The lax PIP execution context, though, is supported by MMS as is.

Therefore, MCC phase 1 WS profile leverages the MMS WS profile for implementing
pulling-based MEPs with lax PIP execution context. For the strict PIP execution
context, this document specifies how to perform PIPs assuming that both PIP
participants provide reasonable system support. Table 1 summarizes the choice
between this specification and MMS WS profile depending on execution context and
supported MEPs.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 16 1 June 2010

 Service-To-Service MEP Pulling-based MEPs

Strict execution context MCC phase 1 WS profile NOT supported

Lax execution context MCC phase 1 WS profile or
MMS WS profile

Use MMS WS profile as is

Table 1: Decision Matrix for Choosing between MCC and MMS

The rest of this document covers the execution of PIPs according to the strict PIP
execution context. MMS WS profile concepts will be reused where possible. This
concerns conventions such as naming conventions for WSDL contents as well as
technology choices such as WS-ReliableMessaging. The key differences in
comparison to the MMS WS profile are:

• QoS property realization in a mutual way.

• Stringent control flow definition.

• Message correlation based on PIP service header elements.

• Support for DTD-based PIPs.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 17 1 June 2010

5. Single Business Document PIP Definition and
Requirements

This page is taken from
“MCC Phase 1 – Single Business Document PIP Template” AS IS.

The “Single Business Document Template” section defines a model for single
business document PIPs that is aligned with ebBP Single business document
BusinessTransactions. It is abstract in two different ways:

1. The realization of a PIP definition component may vary with the
communication technology selected for implementing the PIP.

2. The realization of a PIP definition may vary depending on the execution
context assumed.

Also, the template for Single Business Document PIP definition is general in the
sense that the definition of a concrete PIP will select from the model components
offered. Section “Execution Parameters and Configuration” therefore describes rules
for defining a customized, or “concrete” PIP.

To summarize, there are four levels at which PIP material is defined:

(1) PIP template: This level defines the general structure – or model - of a PIP
and the features that may be used in a particular PIP definition. This is the
object of this document.

(2) PIP definition: This level defines particular PIPs usable for business
exchanges. These will usually contain parameters that are left for users to
define, e.g. via an agreement between members of a supply chain. A PIP
definition is prescriptive and states the conditions for a PIP instance to be
considered as conforming to a PIP definition.

(3) Customized PIP: (or concrete PIP): At this level, all elements of a PIP are
fully defined, and all parameters (such as QoS, timing) are given a specific
value or specific range that is agreed upon between partners. The execution
of such PIPs is determined in terms of QoS, alignment features and
execution mode. The factors that condition a successful or a failed outcome
are fully determined and known from partners.

(4) PIP instance: This is an image of a particular execution of a PIP, i.e. a
particular sequence of concrete messages where all components and PIP
properties are given a value – e.g. a fully defined business document between
two identified partners, a particular timing between these messages, etc.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 18 1 June 2010

6. Concrete Requirements Defined in the Template
Document
This section restates the “MCC Phase 1 – Single Business Document PIP Template”
(the template document) requirements for the MCC phase 1 WS profile. Note that
the business state alignment features of section 6.1.3 are abstract. The
implementation of alignment is specified in later sections. For example, validity
alignment is implemented using ReceiptAcknowledgement messages that are known
from RNIF or ebBP.

6.1 Functional Requirements

6.1.1 Parties Involved

Since RosettaNet supports 1-Action PIPs only, there is only one business document
to be exchanged when performing a PIP. Any PIP has exactly two participants:

‐ (a) the PIP requester party (or Requester), sending the Single Business
Document message.

‐ (b) the PIP responder party (or Responder), receiving the Single Business
Document message.

6.1.2 Business Document

Business documents represent the actual business content of the PIP as defined in
RosettaNet business document definitions. Business documents may be
complemented with additional attachments. In particular, binary content such as
drawings or construction plans may be added. Attachments may be subject to
processing steps performed upon business documents like validation or storage and
therefore may influence the result of PIP executions. The default rule is that business
documents and attachments must be treated as a single entity and that all
processing steps applied to a business document are applied to attachments as well.
The integration partners are free to define different processing rules.

6.1.3 Business State Alignment Features

The objective of these alignment features is to provide to each business party
participating to a PIP, a common understanding about the status of the business
document in terms of its reception, validity and processing prospects. Two features
stand out:

‐ (1) Delivery Alignment
Aligns the information about whether or not the business document has been
delivered to the PIP responder. As opposed to the template document, this
profile does not distinguish between delivery to the messaging layer and
delivery to the application layer. It is assumed that the PIP responder will
ensure that a message that has successfully been delivered to the messaging

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 19 1 June 2010

layer will also be delivered to the application layer. This profile does not
specify the realization of this assumption. Implementation options range from
persistent message logs to synchronous delivery.

‐ (2) Validity Alignment
Aligns the information about whether or not the PIP responder considers the
business document to be valid. This profile acknowledges that the concept of
validity and its technical and legal implications rely on the specifics of PIP
implementers. Therefore, the exact meaning of validity as well the validation
steps to be performed before alignment are to be specified by the integration
partners. The following four validation steps are defined as default (may be
overridden by implementers):

o Syntax validation, i.e., check whether the business document is a
well-formed document.

o Type validation, i.e., check whether the business document is valid
according to a schema definition file.

o Business Rules validation, i.e., check whether the business
document is in line with a set of business rules that can be
automatically checked without touching business applications.

o Sequence validation, i.e., check whether this kind of business
document is expected at the current state of the super-ordinate
collaboration (if any).

The following list of additional steps as well as non-listed validation
procedures may be defined by PIP implementers:

Additional steps (non-comprehensive)

o Business entity dereferencing, i.e., check whether the business
entities defined in the business document can be resolved within the
business application.

o Document completeness check, i.e., check whether the business
document is complete from a business perspective. This may concern
completeness of line items as defined in a business document of a
prior PIP or as required by a business application.

o Business application check, i.e., the responder party must make
sure that any validation checks have been applied to the action
message that are necessary for ensuring processability of the business
message.

o Delegation to business application, i.e., the business document
has successfully been imported by the business application.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 20 1 June 2010

6.1.4 PIP Execution Outcome

A Single Business Document PIP result is defined as a Protocol-outcome:

• Protocol-outcome is a label of value in {SUCCESS, FAILURE} where:

o SUCCESS means: The PIP execution can be considered as fully
conforming to the PIP definition or to the concrete PIP: alignment
requirements, QoS requirements and other execution mode
requirements have been satisfied.

o FAILURE means: The PIP execution has been deficient in some way
and violated some requirements in the PIP definition or the concrete
PIP: alignment requirements, QoS requirements and other execution
mode requirements, have not been observed.

The protocol-outcome is technical and business-outcome may deviate. Whether or
not a SUCCESS protocol-outcome is also a business success may depend on the
evaluation of the business content that has been exchanged. Conversely, a FAILURE
protocol-outcome cannot coincide with a business success.

Note that, as opposed to the template document definition, the strict PIP execution
context requires that both PIP requester and PIP responder know the PIP protocol
outcome at the end of the PIP protocol.

The strict PIP execution context requires the PIP protocol-outcome to be known
by both PIP requester and PIP responder immediately after the PIP execution.

6.2 B2Bi Quality of Service Features

B2Bi has special requirements concerning the realization of QoS. Security and
reliability are of paramount importance. The realization of QoS properties does not
only concern the message that is exchanged but also whether PIP requester and PIP
responder know that it has been realized. As there are two roles, QoS properties
may be realized asymmetrically. For example, by attaching a signature to a message
the receiver can verify the authenticity of the sender but the sender cannot verify
the authenticity of the receiver. A QoS feature is said to be realized in a mutual way
if it is implemented for both roles of a PIP, i.e., PIP requester and PIP responder.
Whether or not asymmetric or mutual implementation of QoS properties is
acceptable is a core difference between the lax PIP execution context and the strict
PIP execution context. The implementation of QoS properties in a mutual way is
discussed in section 8.2.

 (1) Security options

‐ Authentication

‐ Confidentiality

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 21 1 June 2010

‐ Integrity

‐ Authorization

‐ Non Repudiation/Non Repudiation Of Receipt

(2) Reliable Messaging

‐ Guaranteed delivery (At-least-Once delivery)

‐ Duplicate elimination (At-Most-Once delivery)

‐ Exactly Once delivery

(3) Timing Constraints

‐ Time to acknowledge validity (or invalidity)
Measured from the time the business document has been delivered until
alignment of validity has been performed. Note that the integration partners
are free to define the notion of validity as pointed out in section 6.1.3
(“validity alignment”).

‐ Time to Perform
Measured from the start of a PIP until the last alignment message has been
exchanged. Depending on whether or not a PIP is initiated by a super-
ordinate process instance the start may coincide with a super-ordinate
initialization message or with the delivery of the business document.

6.3 Other Non-functional Requirements

Section 6.2 defines QoS environments from a B2Bi point of view. Traditionally, QoS
is defined to cover measurable network qualities like latency or throughput.
However, such requirements explicitly are not subject to MCC investigation.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 22 1 June 2010

7. PIP Parameterization and Execution Control
Allowing for customized PIPs is a core design goal of MCC phase 1. The ebBP format
that allows for abstract specification of QoS parameters has been chosen for
representing the customized PIPs. Customization options are referred to as PIP
property parameters and can easily be shared across the community. For concrete
implementation, more parameters have to be specified that cannot easily be shared.
These parameters are referred to as PIP execution parameters. The template
document describes the difference of between property parameters and execution
parameters as follows.

1. PIP property parameters: These are parameters that control the use of
features defined above as PIP properties: level of state alignment and various
QoS features. A concrete PIP definition may impose some values / settings
for some, and leave some values open or within a range, for others. A default
or recommended value may be suggested, with each concrete PIP definition.

2. PIP execution parameters: These are parameters that control the actual
execution of the PIP. Most of these will be specific to the messaging solution
in use, but some will be defined here independently from these messaging
solutions. Indeed, such parameters may help harmonize a PIP usage across
messaging solutions.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 23 1 June 2010

7.1 PIP Property Parameters

The following parameters are configurable on a PIP definition and a customized PIP
basis. The specification items reflect ebBP’s abstract specification options for PIPs.
The implementation of the specification options is described in section 8. Example
ebBP models of PIP property parameters are given in section 10.

Specification item Configurable Implication Explanation

Send Request Document no -

A request document always has

to be sent.

Overall Time-To-Perform yes -
Time for performing the PIP
protocol.

ReceiptAcknowledgement yes -
May be used for implementing
alignment of validity.

Non-Repudiation yes - --

Non-Repudiation-of-Receipt yes
Sending a
ReceiptAcknowledgement --

TimeToAcknowledgeReceipt yes
Sending a
ReceiptAcknowledgement

Time for sending a
ReceiptAcknowledgement
measured from the receipt
of the action message. If this
property is not specified or set to null
and if, at the same time, the use of a
ReceiptAcknowledgement is
required then the PIP requester
potentially must wait forever.

Reliability yes

Turning off reliability
implicates “lax execution
context”

The “strict execution context” (cf.
section 4.2) requires mutual
agreement regarding delivery of
messages. This, in turn, requires the
use of a reliable messaging facility.

Confidentiality yes - --

Integrity yes - --

Authentication yes - --

Authorization yes - --

IntelligibleCheckRequired yes
Sending a
ReceiptAcknowledgement

If set to true, implies the default
validation procedures defined in
section 6.1.3 or the validation steps
defined by the integration partners.
If set to false, implies that no
validation steps will be performed. A
ReceiptAcknowledgement may be
exchanged nonetheless.

RetryCount yes -

Describes how often a business
document/signal is to be resent
at the PIP process level.

Table 2: PIP Property Parameters

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 24 1 June 2010

7.2 Further PIP execution parameters

Message Exchange Patterns: These are usually conditioned by connectivity
constraints. These exchange patterns may affect the way QoS is achieved as well as
state alignment. Three MEPs are defined here that are expected to cover most
execution cases, but are not exclusive of others. Some may only be applicable to
some transport protocols. These MEPs, however, are defined abstractly from these
transports while defining some invariant properties across these transports:

• Synchronous execution (requester-initiated): The action message is
pushed from the requester to the responder party, while any form of receipt
(implementing some state alignment feature) is sent back over the same
connection synchronously. This MEP only applies for request-response
transports such as HTTP, where receipts can be sent over the response leg.

• Asynchronous execution with callback (requester-initiated): The action
message is pushed from the requester to the responder party, while any form
of receipt (implementing some state alignment feature) is sent back as a
callback asynchronously on a different connection. This MEP is appropriate
when the timing for producing the receipt prohibits using the same
connection. Invariants: This MEP assumes addressability of both requester
and responder, and readiness to receive incoming messages.

• Asynchronous execution with pulling (requester-initiated): The action
message is pushed from the requester to the responder party, while any form
of receipt (implementing some state alignment feature) is sent back
asynchronously as result of a later message pull from the requester. This MEP
is appropriate when the timing for producing the receipt prohibits using the
same connection and the initiator (requester) is not addressable. Invariants:
This MEP assumes that the requester takes the initiative of receiving the
receipt: it is using a request-response exchange (with receipt over the
response) for request-response transports such as HTTP. For another non-
request-response protocol such as email, the receipt may be pushed first
(e.g. SMTP) to some intermediate store, then pulled by the requester (e.g.
using a client protocol such as IMAP).

Protocol Binding:

Protocol Binding is covered by MMS WS profile V11.00.00, section 4.3.

Support for attachments:

Support for attachments is covered by MMS WS profile V11.00.00, section 4.3.2.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 25 1 June 2010

Reconfiguration of PIP parameters:

PIP parameters, in particular QoS parameters such as Time-To-Perform, may have to
be changed during the lifecycle of PIP implementations. This profile does not make
assumptions about whether or not PIP parameters are reconfigurable at run-time.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 26 1 June 2010

8. Realization
This section discusses the realization of the requirements defined in sections 6 and 7.
Some of these requirements are supported by MMS WS profile as is and therefore
are not discussed in detail again. Section 8.1 draws the line between the realization
of requirements as defined in MMS and the implementation of additional features as
described in this document. The realization of QoS parameters is discussed in section
8.2 as the realization of QoS significantly influences the design of control flow.
Section 8.3 then specifies the PIP protocol (cf. section 3.3) using a state machine
based notation.

8.1 Execution Contexts and MEPs

The relation between MCC WS profile and MMS WS profile has been discussed in
section 4.2. The differing assumptions and requirements of the two profiles cannot
freely be combined. In particular, implementing MCC’s “strict execution context” for
MMS’ pure clients is overly complex. Table 1 (page 16) states that pulling-based
MEPs are to be implemented using the MMS WS profile.
If composition of PIPs is intended then MCC’s “strict execution context” shall be
assumed. The next sections describe how to implement the MEPs “Synchronous
execution” and “Asynchronous execution with callback” (cf. section 7.2) under the
“strict execution context”. This specification does not provide a separate discussion
of realizing these MEPs for the “lax execution context” as the “strict execution
context” based implementation fully meets the “lax execution context” requirements.
Users may also choose to implement these maps under “lax execution context” using
MMS technology.

This specification describes the implementation of non-pulling based MEPs under the
“strict execution context”. This concerns sections 8.2, 8.3, 10 and 11.

8.2 Realization of QoS (Strict execution context)

This section’s contents are aligned with the QoS feature requirements defined in
section 6.2. Security and reliable messaging features MUST be implemented for each
PIP protocol level (cf. section 3.3) message exchanged. These are the messages for
exchanging (cf. section 8.3):

• a business document (bizDoc).

• a receipt acknowledgement (RA).

• a receipt acknowledgement exception (RAE).

• a general exception (GE).

Conversely, timing constraints cannot be applied to single message exchanges.
Therefore, the realization of “time to acknowledge validity” and “time to perform” as

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 27 1 June 2010

defined in section 6.2 is described in the next section.

Reliable Messaging

MCC’s “strict execution context” requires that integration partners achieve
agreement upon the result of PIP executions. The result of PIP executions is
determined by the next section’s PIP execution protocol that relies on the availability
of reliable messaging at the messaging level. Therefore, the use of WS-
ReliableMessaging with “Exactly-Once” semantics is compulsory for the exchange of
any PIP protocol level message. “At-least-Once” and “At-Most-Once” delivery
semantics are considered to be relevant for the “lax execution context” only.

The use of WS-ReliableMessaging with “Exactly-Once” semantics is compulsory for
the exchange of all PIP protocol level messages.

Furthermore, it is assumed that a message that is successfully delivered at the
messaging level will also successfully be delivered at the application level.
Integration partners may apply techniques such as persistent message logs or
synchronous delivery for fulfilling this assumption, but the detailed implementation is
considered to be out of the scope of this specification.

At runtime, if a WS-ReliableMessaging implementation indicates that the delivery
status of the message under transmission is unknown, then the sending party must
stop processing until the delivery status has been determined. This specification does
not impose restrictions upon how the delivery status may be clarified. Out-Of-Bounds
communication is one possible option.

Authentication, Integrity and Confidentiality

The realization of security features is to be performed in a mutual way as well. In
particular, if authentication, confidentiality and integrity is requested for a PIP
protocol level message m, then the following must be true after having exchanged
the message (note that reliable messaging always is required):

1. Both the PIP requester and the PIP responder know that m has successfully
been delivered (Reliable Messaging).

2. m has not been modified, i.e., m as sent by the PIP requester/responder and
m as received by the PIP responder/requester are identical. Both PIP
requester and PIP responder know that m has not been modified (Integrity).

3. m has not been disclosed to anybody other than the PIP requester or PIP
responder (Confidentiality).

4. The sender of message m (PIP requester/responder) is sure about the identity
of the message receiver (PIP responder/requester) and, conversely,
the receiver of message m (PIP responder/requester) is sure about the
identity of the message sender (PIP requester/responder).
The message sender/receiver knows that the message receiver/sender has
successfully performed an authentication check (Mutual authentication).

Authentication, integrity and confidentiality must be implemented in a mutual way.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 28 1 June 2010

The realization of these features is to be realized as pointed out in the
WS-ReliableMessaging security considerations (WS-RM sections 5 and 6) using
functionality from, among others, WS-Security and WS-SecureConversation and
obeying further restrictions from the WS-I Reliable Secure Profile Version 1.0.

For full conformance with this specification, integration partners are free to choose
different implementation means as long as the above properties (1-4) hold true. This
includes equivalent technologies at the HTTP level. Simple layering of security and
reliable messaging features, e.g., using asymmetric signatures as part of the payload
of a reliable channel, is not sufficient for the following two reasons:

1. Mutual realization of security-related QoS properties may create a new
reliability problem.
Using an asymmetric signature within the payload of a message, the receiver
can verify the authenticity of the sender, but the sender cannot be sure
about authenticity of the receiver. Sending a signed acknowledgment with a
hash value of the original message does not help because then the sender of
the acknowledgment cannot be sure who has received the acknowledgment.

2. A malicious attacker must be assumed.
A malicious attacker basically may try to manipulate any message
exchanged between integration partners. This not only holds true for the
message payloads but for lower-level transport messages as well. This
means that an attacker may try to manipulate communication by means of
tampering with unsecured reliability messages. While an attacker may not be
able to break arbitrary security goals, the reliability property is endangered.

Authorization

Authorization can be split up into system authorization and client/server
authorization, where system authorization refers to limiting access to business
service interfaces from within the organization and client/server authorization refers
to limiting acceptance of PIP protocol level messages from integration partners.

System authorization is out of the scope of this specification.

Client/Server authorization is to be implemented mutually, i.e., after having
exchanged a PIP protocol level message m, the following must be true:

• The receiver of message m (PIP responder/requester) considers m to have
been sent by an authorized entity.
The sender of message m (PIP requester/responder) must be sure that the
message receiver (PIP responder/requester) considers m to have been sent
by an authorized entity.

• The sender of message m (PIP requester/responder) considers m to have
been received by an authorized entity.
The receiver of message m (PIP responder/requester) must be sure that the
message sender (PIP requester/responder) considers m to have been
received by an authorized entity.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 29 1 June 2010

In the simplest case, authentication is identical with authentication, i.e., any
authenticated entity also is authorized. Authorization checks that go beyond
authentication have to be integrated with the implementation of authentication such
that whenever authentication procedures succeed/fail, then authorization procedures
succeed/fail as well.
This is due to similar security considerations as for mutual authentication.

Authorization must be implemented in a mutual way.

Non-Repudiation and Non-Repudiation-Of-Receipt

Non-Repudiation and Non-Repudiation-Of-Receipt are special in implying a very hard
error model. Non-repudiation is defined as the property that the sender of a
particular message cannot deny having sent the message. The attempt to deny
having sent/received a message implies that an integration partner cannot be
assumed to behave as defined in a protocol specification. If so, the possibility of
implementing two-way non-repudiation is questionable, i.e., the sender cannot deny
having sent a message while the receiver cannot deny having received it.

Therefore, non-repudiation is to be implemented in an asymmetric way by attaching
a signature to business documents and business signals and archiving these
messages upon arrival. Once the non-repudiated message has been archived the
receiver can claim to have successfully received the message. If a PIP execution
succeeds (which should be the standard case) then having implemented non-
repudiation in an asymmetric way does not do any harm. If it fails, the receiver of
the non-repudiated message may assert a claim based on the message.

Non-Repudiation/Non-Repudiation-Of-Receipt
must be implemented in an asymmetric way.

8.3 Control flow (Strict execution context)

This section specifies the flow of messages for implementing the Asynchronous
execution with callback MEP as well as the Synchronous execution MEP of section
7.2. Further, the realization of all PIP property parameters of table Table 2 that have
not yet been covered in the last section is specified. The specification is provided
using a communicating state machine formalism and the semantics is explained in
plain text. Note that all messages between PIP requester and PIP responder are
exchanged synchronously from a messaging point of view, i.e., there are no
message buffers for decoupling the interaction between PIP requester and PIP
responder (there may be buffers for the internal realization of the PIP level protocol
though).
Thus, the distinction between asynchronous and synchronous interaction refers to
the coupling between PIP requester process and the PIP responder process and not
to the transmission of messages.
In the asynchronous case, the PIP requester delivers the business document to the
PIP responder (synchronously) and then waits for the PIP responder to send back
any messages. In the meantime, various interactions may take place at the PIP
requester’s side internally.
In the synchronous case, the PIP requester sends the business document to the PIP

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 30 1 June 2010

responder and blocks on the communication channel until a response is provided. No
internal interactions at the PIP requester’s side may take place internally.

8.3.1 Asynchronous Interaction

The interaction between a PIP’s requesting role and responding role is specified by
the state machines depicted in figure Figure 5 and figure Figure 6, respectively.
These state machines show the respective participant’s process when communicating
in a PIP.

Figure 5: Asynchronous PIP Requester Protocol with RA

PIP Requester Protocol

As shown in figure Figure 5, the requester’s process is in state “Deliver Business
Document” (DeliverBizDoc) after being started. In this state, the requester attempts
to send the business document to the responder’s process. If the communication of
the business document is successful (RES!bizDoc), the requester’s process waits for
a receipt acknowledgement from the responder’s process (AwaitRA). If the receipt
acknowledgement is received within the agreed timeframe (RES?ra), the requester’s
process finishes successfully.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 31 1 June 2010

In the requester’s process the following failures may occur:

• Sending the business document fails (RES!bizDocFail).
In this case, there are two options:

o (i) The current business transaction error count is lower than or equals
the agreed retry count (RES!bizDocFail[$errCount <= $maxRetries]).
In this case, the error count is incremented ($errCount=$errCount+1)
and state “Deliver Business Document” is entered again.

o (ii) The error count is greater than the agreed retry count
(RES!bizDocFail[$errCount > $maxRetries]). In this case, the process
enters state “General Exception” (CP-GE).
In state “General Exception,” the requester’s process communicates a
general exception to the responder (RES!ge) and terminates with a
failure. Sending the general exception may also fail (RES!geFail), but
this has no implications on the process (it reaches the state failure).

• The receipt acknowledgement is not received in time.
In state “Await Receipt Acknowledgment,” the responder waits for the receipt
acknowledgment confirming that the responder has properly received the
business document. If the time to acknowledge receipt is exceeded (toRA),
the requester’s process enters state “General Exception” (cf. above).

• The overall time to perform has exceeded.
At any time during executing the process, the agreed time to perform may
have been exceeded. In this case, the requester’s process enters state
“General Exception” (cf. above).

• A receipt acknowledgement exception is received.
In state “Await Receipt Acknowledgement,” the requester’s process may
receive a receipt acknowledgment exception from the responder (RES?rae).
This terminates the requester’s process with a failure.

• A general exception is received.
As long as a receipt acknowledgement has not been received, the requester
may receive a general exception from the responder (RES?ge). This
terminates the requester’s process with a failure.

• A general exception is sent.
As long as a receipt acknowledgement has not been received, the requester
may send a general exception to the responder (RES!ge). This corresponds to
a cancellation of the process. There may be several reasons for cancelling the
process like a cancellation on the business level. Whenever a requester tries
to send a general exception, reception of receipt acknowledgements MUST be
disabled. In case the responder tries to deliver a receipt acknowledgement at
the same time, this call MUST fail. This is possible due to using synchronous
communication.
Sending the general exception may also fail (RES!geFail), but this has no
implications on the process (it reaches the state failure).

PIP Responder Protocol

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 32 1 June 2010

After the responder’s process has been started, it waits in state “Await Business
Document” (AwaitBizDoc) until receiving the business document. If the business
document is received in time, the process reaches state “Got Business Document”
(GotBizDoc). It is assumed that the business document is safely stored at that point
in time. In this state, if the PIP parameterization has the isIntelligibleCheckRequired
attribute flagged to true (cf. section 7.1), the responder performs the validation
steps as agreed upon by the integration partners (cf. Validity Alignment, section
6.1.3). Otherwise, no validation procedures are performed.
Assuming that the document has been properly received, the process enters the
state “Deliver Receipt Acknowledgement” (DeliverRA). If the receipt acknowledgment
is successfully sent to the responder (REQ!ra), the responder’s process finishes
properly.

Figure 6: Asynchronous PIP Responder Protocol with RA

In the requester’s process the following failures may occur:

• Time to perform may be exceeded.
In state “Await Business Document,” the responder waits for a given
timeframe (cf. Overall Time-To-Perform as of section 7.1). If the business
document is not received within the agreed timeframe (toTTP), the state
“General Exception” (CP-GE) is entered. In this state, a general exception is
sent to the requester (REQ!ge) and the process terminates with a failure.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 33 1 June 2010

Sending the general exception may also fail (REQ!raeFail), but this has no
implications on the process (it reaches the state failure).

• The business document checks fail.
In state “GotBizDoc,” the responder checks the received document in case a
legibility check is required (cf. isIntelligibleCheckRequired of section 7.1). If
checking the document fails, a receipt acknowledgement exception is sent to
the responder (REQ!rae) and the process terminates unsuccessfully. Sending
the receipt acknowledgement exception may also fail (REQ!raeFail), but this
has no implications on the process (it reaches the state failure).

• Delivering the receipt acknowledgement fails.
In state “Deliver Receipt Acknowledgement” (DeliverRA), the responder
attempts to send the receipt acknowledgement to the requester. There are
two options if sending the receipt acknowledgement is not successful
(REQ!raFail):

o (i) The internal error count is lower than or equals the agreed retry
count (REQ!raFail$errCount <= $maxRetries]). In this case, the
internal error count is incremented and state “Deliver Receipt
Acknowledgement” is entered again.

o (ii) The internal error count is greater than the retry count ($errCount
> $maxRetries). In this case, the state “General Exception” (CP-GE,
cf. above) is entered.

• A general exception is received.
At any time during the execution of the process, the responder may receive a
general exception from the requester (REQ?ge). This terminates the
responder’s process with a failure.

• A general exception is sent.
At any time during the execution of the process (except for state DeliverRA),
the responder may send a general exception to the requester (REQ!ge). This
corresponds to a cancellation of the process. There may be several reasons
for cancelling the process like a cancellation on the business level. Sending
the general exception may also fail (REQ!geFail), but this has no implications
on the process (it reaches the state failure).

Protocol Specifications without ReceiptAcknowledgement

PIP implementers may choose not to use ReceiptAcknowledgement messages for
performing PIPs (cf. table Table 2). In this case the state machines depicted in
figures Figure 7 and Figure 8 specify the control flow of the PIP requester and the
PIP responder process. The semantics of the state machine transitions corresponds
to the descriptions above, but the realization of IntelligibleCheckRequired,
TimeToAcknowledgeReceipt and Non-Repudiation-of-Receipt does not apply due to
the missing ReceiptAcknowledgement (cf. table Table 2).

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 34 1 June 2010

Figure 7: Asynchronous PIP Requester Protocol without RA

Figure 8: Asynchronous PIP Responder Protocol without RA

8.3.2 Synchronous Interaction

The control flow for implementing synchronous interaction PIPs without
ReceiptAcknowledgement corresponds to the control flow for implementing
asynchronous interaction PIPs without ReceiptAcknowledgement (cf. figures Figure 7
and Figure 8).

In synchronous interaction PIPs with ReceiptAcknowledgement, acknowledgments
and acknowledgment exceptions are communicated synchronously as depicted in
figures Figure 9 and Figure 10. Note that the transitions to the Success states in
figures Figure 9 and Figure 10 denote the only difference to the protocol
specifications for asynchronous interaction PIPs without ReceiptAcknowledgement
(cf. figures Figure 7 and Figure 8). This means that sending a business document

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 35 1 June 2010

opens a synchronous channel and the corresponding acknowledgment (or
acknowledgement exception) is sent as response over the same channel.

This is different to asynchronous interaction PIPs, where business documents and
acknowledgments are communicated via different communication channels.

In case the IntelligibleCheckRequired (cf. section 7.1) parameter has been flagged to
true, PIP responder process must perform the validation steps agreed upon by the
implementation partners (cf. section 6.1.3) while processing the PIP requester’s
business document send call. Processing of the TimeToAcknowledgeReceipt (cf.
section 7.1) parameter is constrained by the timeout handling capabilities of the
underlying communication channel.

Figure 9: Synchronous PIP Requester Protocol with RA

Figure 10: Synchronous PIP Responder Protocol with RA

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 36 1 June 2010

8.3.3 PIP Instance Identification and Message Correlation

Message correlation denotes the act of associating messages with process instances
which may be implemented at the SOAP/HTTP level or at the PIP process level. While
message correlation at the SOAP/HTTP level leverages the intrinsic correlation
features of the messaging technology, message correlation at the PIP process level
defines message correlation in terms of the content of PIP business document
headers and business signal headers, which offers more flexibility with respect to
usage of a particular messaging technology.

In this section, the following abbreviations will be used:

bizDoc = Business Document
RA = ReceiptAcknowledgement
RAE = ReceiptAcknowledgmentException
GE = GeneralException

Correlation Requirements

The choice of correlation mechanism depends on the style of interaction. As the MCC
effort targets at the composition of multiple PIPs within a single collaboration the
following situations have to be accommodated for (considering the interaction styles
of sections 8.3.1 and 8.3.2):

• Group I: Isolated PIPs
Simple B2B interactions may consist of one single PIP (isolated PIPs). Then,
the following requirements for correlating PIP level messages may arise:

o Case I1: Synchronous interaction without RA
In this case, the PIP requester tries to send the PIP bizDoc to the PIP
responder and immediately terminates when the message
transmission is terminated.
As there is no superordinate process instance, the PIP responder
process effectively starts and terminates by processing the Web
service call carrying the bizDoc.
The transmission of GEs as defined in section 8.3.2 therefore does not
apply.

o Case I2: Asynchronous interaction without RA
The correlation requirements of case I2 are identical to the
requirements of case I1.

o Case I3: Synchronous interaction with RA
In this case, the PIP requester tries to send the PIP bizDoc to the PIP
responder and blocks on the corresponding Web service call until a RA,
a RAE or GE is provided by the PIP responder. Thus, business
document and reply message (RA, RAE or GE) have to be correlated.
As there is no superordinate process instance, the PIP responder
process effectively starts and terminates by processing the Web
service call carrying the bizDoc.
The transmission of GEs outside of the bizDoc Web service call (as
defined in section 8.3.2) therefore does not apply.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 37 1 June 2010

o Case I4: Asynchronous interaction with RA
In this case, the PIP requester tries to send the PIP bizDoc to the PIP
responder in a first Web service call and, if successful, waits for an
incoming Web service call for collecting a RA, RAE or GE message.
As there is no superordinate process instance, the PIP responder
process effectively starts upon reception of the bizDoc and terminates
upon either delivering a RA, RAE or GE to the PIP requester or by
receiving a GE from the PIP requester (cf. figure Figure 6).
Therefore, correlation between bizDoc and reply message (RA, RAE,
GE) in the PIP requester’s process as well as correlation between
bizDoc and (potentially) an additional GE at the PIP responder’s
process has to be performed.

• Group C: Composable PIPs
Complex B2B interactions may be composed of several PIPs (denoted as
business collaborations). In this case, PIP level messages not only have to be
correlated with each other, but also with the superordinate business
collaboration. Moreover, coordination between business collaboration
processes and subordinate PIP processes may require starting PIP responder
processes before the bizDoc has been transmitted. Decoupling the start of PIP
requester and PIP responder processes from the transmission of bizDoc
messages is explicitly supported by the PIP protocol defined in sections 8.3.1
and 8.3.2. In turn, GE messages that are transmitted before the bizDoc
message may have to be correlated to a running PIP instance as well as a
superordinate business collaboration instance.

o Case C1: Synchronous interaction without RA
All messages defined in figures Figure 7: Asynchronous PIP Requester
Protocol without RA and Figure 8 (these figures apply to synchronous
interaction as well) have to be correlated with the running PIP
instance.

o Case C2: Asynchronous interaction without RA
All messages defined in figures Figure 7: Asynchronous PIP Requester
Protocol without RA and Figure 8 have to be correlated with the
running PIP instance.

o Case C3: Synchronous interaction with RA
All messages defined in figures Figure 9 and Figure 10 have to be
correlated with the running PIP instance.

o Case C4: Asynchronous interaction with RA
All message defined in figures Figure 5 and Figure 6 have to be
correlated with the running PIP instance.

The following explanations specify the choice of correlation mechanism for the above
scenarios of PIP execution. Note that, the definition of message correlation with
business applications/backend systems is out of the scope of this specification.

Moreover, the assumption of the “MCC Phase 1 – Single Business Document PIP
Template” document about generation of PIP instance identifiers is required:

“Generation of Globally Unique Ids (GUIDs) for PIP instances

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 38 1 June 2010

PIP instance ids are to be generated by the PIP requester by appending an id that is
unique within her systems to her globally unique partner id, preferably a GLN or a
DUNS number.”

Realization of Message Correlation

In case I1 and case I2, the bizDoc message essentially is the only message to be
exchanged. Therefore, there is no need for a correlation mechanism.

In case I3, all messages (bizDoc, RA, RAE and GE) are transmitted within a single
request-reply Web service call. Therefore, the correlation between bizDoc and RA,
RAE or GE is inherently provided by the messaging technology. For flexibility
reasons, this specification encourages the use of the correlation mechanism defined
for case I4.

In case I4, the bizDoc message initiates the overall process. This specification
defines content based correlation between messages (bizDoc, RA, RAE, GE) in terms
of the document identifier included in the bizDoc message. This identifier MUST be a
GUID as defined above and is to be included in the messages exchanged as follows:

• For DTD-based PIP bizDoc messages:
<ROOT-TAG-OF-PIP>.<thisDocumentIdentifier>.<ProprietaryDocumentIdenti
fier>

• For XSD-based PIP bizDoc messages:
<ROOT-TAG-OF-PIP>.<DocumentHeader>.<DocumentInformation>.<Docum
entIdentification>.<Identifier>

• For RA messages (cf. ebBP ReceiptAcknowledgement definition):
<ReceiptAcknowledgement>.<OriginalDocumentIdentifier>

• For RAE messages (cf. ebBP Exception definition):
<Exception>.<OriginalDocumentIdentifier>

• For GE messages (cf. ebBP Exception definition):
<Exception>.<OriginalDocumentIdentifier>

As an alternative to content based message correlation, partners may agree to use
WS-Addressing as defined in MMS (cf. MMS section 3.5 Message Correlation), which
corresponds to defining relations between PIP level messages at the transport level.
Consequently, the use of WS-Addressing is discouraged by this specification.

Full conformance with this specification requires support for
content-based message correlation for case I4.

In cases C1, C2, C3 and C4, this specification defines content based correlation
between messages (bizDoc, RA, RAE, GE) in terms of an additional composition
header that is to be contained together with the actual PIP payload message within a
composition container. The composition header is to be created by a superordinate
process instance that controls the overall business collaboration. Detailed rules for
creating and processing the composition header therefore are to be defined by MCC
phase 2. For MCC phase 1, correlation of PIP level messages in terms of the
composition header is relevant only.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 39 1 June 2010

The composition header is defined as follows:

<xsd:complexType name="commonCompositionHeaderType">
 <xsd:sequence>
 <xsd:element name="RootIdentifier"
 type="xsd:string" minOccurs="1" maxOccurs="1"/>
 <xsd:element name="ParentIdentifier"
 type="xsd:string" minOccurs="1" maxOccurs="1"/>
 <xsd:element name="InstanceIdentifier"
 type="xsd:string" minOccurs="1" maxOccurs="1"/>
 <xsd:element name="ProcessDepth"
 type="xsd:int" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
</xsd:complexType>

For PIP level message correlation, the InstanceIdentifier field is to be used.
Further, MCC phase 1 implementations must not make any assumptions about
content or processing of all composition header fields except for the
InstanceIdentifier field. In particular, any other message correlation mechanism,
including WS-Addressing, is disallowed (cases C1, C2, C3, C4).

For cases C1, C2, C3 and C4, this specification mandates:
- the use of the composition header’s InstanceIdentifier

field for PIP level message correlation.
- WS-Addressing MUST NOT be used for PIP level message correlation.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 40 1 June 2010

9. WSDL Mapping Rules
Web Service interfaces defined using WSDL provide information on the endpoints &
the messages in an implementation-independent fashion; i.e. the data being
exchanged (messages) & the operations exposed are treated as an abstract
description independent of the message format or the network protocol used.

As defined in section 3.1, an abstract WSDL file has type definitions, message
definitions & port type definitions. These definitions, when extended by providing
binding information on concrete protocol, network addresses & port information for
usage of the web service, form the concrete WSDL definition. This section will define
the abstract part of a WSDL definition with references to the binding information
present in the MMS WS Profile specification.

MMS WS profile specification uses WSDL specification version 1.1 & defines the IT
scenarios or the Message Exchange Patterns (MEP) in its sections 3.2 and 3.3.

This specification adopts the WSDL mapping rules of the MEPs defined in section 3.3
of the MMS WS profile in full (this also covers the Asynchronous execution with
pulling MEP of section 7.2). For the Service-to-Service MEP of the MMS WS
profile, slight adaptations have to be made for accommodating both the
Synchronous Execution and Asynchronous execution with callback of section
7.2, and for accommodating the message correlation requirements of section 8.3.3.

In the following sections, the adaptations to the MMS Service-to-Service MEP will be
provided by summarizing the relevant WSDL mapping rules as defined in MMS and
by defining new MCC phase 1 rules. For clarity, MMS rules will be indexed by ids of
the form RXXXX (directly taken from the MMS profile) and MCC phase 1 rules will be
indexed by ids of the form MCCRXXXX.

9.1 Messages

9.1.1 Importing Message Types

R1001 Types defined in the RosettaNet schemas MUST be imported into the WSDL
type section.

For clarity, this requirement applies to the following objects of specification:

• XSD based PIPs.

• DTD based PIPs.
For the purpose of importing DTD PIP type definitions, conversion XSDs
provided by RosettaNet must be used (cf. section 3.7).

• Composition header extensions.
In case composition headers as defined in section 8.3.3 are to be used, XSD
PIP or DTD PIP type definitions have to be wrapped within a composition
container.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 41 1 June 2010

When adding a composition header to an existing RosettaNet business document
definition, a new XML Schema element is to be created and its name has to be built
from prepending the prefix “Composable” in front of the original RosettaNet type
definition. The new composable XML Schema element must contain the composition
header and the original PIP type definition of the business document’s root element.
An example for a composable type definition is given for PIP 3A20:

<xs:element
name="ComposablePip3A20PurchaseOrderConfirmationNotification">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="head:TransactionCompositionHeader"/>
 <xs:element
ref="pip:Pip3A20PurchaseOrderConfirmationNotification"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

The new composable XML Schema element must be defined within an XML
namespace that is derived from the original namespace by appending the string
“:composable”.

MCCR1001 Signal message types, i.e. receipt acknowledgement, receipt
acknowledgement exception and general exception, have to be imported from the
ebBP specification.

MCCR1002 In case a composable PIP is to be defined, the predefined RosettaNet
composition containers that carry ebBP signal definitions, have to be used.

9.1.2 Defining WSDL Messages

The following rules apply to the WSDL messages that refer to the business document
schemas & the signal schemas defined by RosettaNet.

R1002 All WSDL messages that refer to RosettaNet business schemas or signal
schemas MUST contain a single part.

R1004 The single part MUST refer to the root element within the RosettaNet schema.

MCCR1003 The single part MUST refer to the composition container element in case
a composable execution has to be assumed.

R1005 The name of the WSDL message MUST be created by adding ‘Msg’ to the local
name of the element.

R1006 The part name MUST be created by adding ‘Part’ to the name of the element.

Examples for defining WSDL messages for Isolated PIPs or Composable PIPs (cf.
section 8.3.3) are given below:

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 42 1 June 2010

Example:

xmlns:ns="urn:rosettanet:specification:interchange:PurchaseOrderConfirma
tionNotification:dtdbase:01.00"

…

<wsdl:message
 name="Pip3A20PurchaseOrderConfirmationNotificationMsg">
 <wsdl:part name="Pip3A20PurchaseOrderConfirmationNotificationPart"
 element="ns:Pip3A20PurchaseOrderConfirmationNotification"/>
</wsdl:message>

Example:

xmlns:ns="urn:rosettanet:specification:interchange:PurchaseOrderConfirma
tionNotification:dtdbase:01.00:composable"

…

<wsdl:message
 name="ComposablePip3A20PurchaseOrderConfirmationNotificationMsg">
 <wsdl:part
 name="ComposablePip3A20PurchaseOrderConfirmationNotificationPart"
 element="ns:ComposablePip3A20PurchaseOrderConfirmationNotification"
/>
</wsdl:message>

The definition of PIP signal messages as WSDL messages is analogous to the
definition of business messages. The message definition preserves the generic
definition of exceptions as defined in ebBP and therefore does not distinguish
between receipt acknowledgement exception messages and general exceptions.

MCCR1004 For Isolated PIPs, the raw ebBP signal definitions have to be used.

Example:

xmlns:sig="http://docs.oasis-open.org/ebxml-bp/ebbp-signals-2.0"

…

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 43 1 June 2010

<wsdl:message name="ExceptionMsg">
 <wsdl:part name="ExceptionPart" element="sig:Exception"/>
</wsdl:message>

<wsdl:message name="ReceiptAcknowledgementMsg">
 <wsdl:part name="ReceiptAcknowledgementPart"
 element="sig:ReceiptAcknowledgement"/>
</wsdl:message>

MCCR1005 For Composable PIPs, the ebBP signal definitions within a RosettaNet
composition container have to be used.

Example:

xmlns:ctrl="urn:rosettanet:specification:interchange:composable:xml:contr
olMsg:1.0"

<wsdl:message name="ComposableReceiptAcknowledgementMsg">
 <wsdl:part name="ComposableReceiptAcknowledgementPart"
 element="ctrl:ComposableReceiptAcknowledgementMessage"/>
</wsdl:message>

<wsdl:message name="ComposableExceptionMsg">
 <wsdl:part name="ComposableExceptionPart"
 element="ctrl:ComposableExceptionMessage"/>
</wsdl:message>

9.2 Operations

The operation names are based on the operation parameters. In general, RosettaNet
PIP Activity gets mapped to operation name, and Action gets mapped to parameters.

R1009 For operations with a single input RosettaNet Business Message (no output),
the operation name MUST be constructed by adding ‘Op’ to the root element of the
input RosettaNet schema. Following is the convention used:

InputRootElementNameOp

MCCR1006 For operations with an input and output RosettaNet Business Message
the operation name MUST be constructed by appending ‘Op’ to the root element of
the input RosettaNet schema. The convention used is the same as for rule R1009.

MCCR1007: Operation names for composable PIPs MUST be constructed by adding
the prefix ‘Composable’ and the suffix ‘Op’ to the root element of the
RosettaNet/ebBP type definition.

MCCR1008: For synchronous interactions, the PIP responder’s receipt
acknowledgment exception or general exception in reply to the PIP requester’s
business message MUST be defined as WSDL fault detail.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 44 1 June 2010

Example:

<wsdl:operation
 name="Pip3A20PurchaseOrderConfirmationNotificationOp">
 <wsdl:input name="input"
 message="tns:Pip3A20PurchaseOrderConfirmationNotificationMsg"/>
</wsdl:operation>

Example:

<wsdl:operation
 name="ComposablePip3A20PurchaseOrderConfirmationNotificationOp">
 <wsdl:input name="input"
 message="tns:ComposablePip3A20PurchaseOrderConfirmationNotification
Msg"/>
</wsdl:operation>

Example:

<wsdl:operation
name="ComposablePip3A20PurchaseOrderConfirmationNotificationOp">
 <wsdl:input name="input"
message="tns:ComposablePip3A20PurchaseOrderConfirmationNotificationMs
g"/>
 <wsdl:output name="output"
message="tns:ComposableReceiptAcknowledgementMsg"/>
 <wsdl:fault name="fault" message="tns:ComposableExceptionMsg"/>
</wsdl:operation>

Example:

<wsdl:operation
name="Pip3A20PurchaseOrderConfirmationNotificationOp">
 <wsdl:input name="input1"
message="tns:Pip3A20PurchaseOrderConfirmationNotificationMsg"/>
 <wsdl:output name="output1"
message="tns:ReceiptAcknowledgementMsg"/>
 <wsdl:fault name="fault1" message="tns:ExceptionMsg"/>
</wsdl:operation>

R1011 Fault operation MUST be named ‘ExceptionOp’

R1012 Receipt Acknowledgement operation MUST be named
‘ReceiptAcknowledgmentOp’

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 45 1 June 2010

R1013 ‘ReceiptAcknowledgmentOp’ MUST have ONLY ‘ReceiptAcknowledgmentMsg’
as the input.

R1014 ExceptionOp MUST have only ‘ExceptionMsg’ as the input.

Example:

<operation name="ExceptionOp">
 <input name="input" message="tns:ExceptionMsg"/>
</operation>

Example:

<operation name="ReceiptAcknowledgementOp">
 <input name="input" message="tns:ReceiptAcknowledgementMsg"/>
</operation>

Example:

<operation name="ComposableExceptionOp">
 <input name="input" message="tns:ComposableExceptionMsg"/>
</operation>

Example:

<operation name="ComposableReceiptAcknowledgementOp">
 <input name="input"
message="tns:ComposableReceiptAcknowledgementMsg"/>
</operation>

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 46 1 June 2010

9.2.1 Operations Required for Mapping Message Exchange
Patterns

The WSDL portType definitions for different MEPs and message correlation
requirements are given below. Table Table 3 serves for looking up the correct
portType definition given the MEP as of section 7.2 and correlation requirement as of
section 8.3.3. Note that MEPs not listed here are to be performed as defined in the
MMS WS profile. Note further that portType names are not subject to
standardization.

MEP Correlation
Requirement

Uses
ReceiptAck.

PIP
requester

PIP responder

Asynchronous
execution with
callback Isolated Yes Definition 1 Definition 2

Asynchronous
execution with
callback Composable Yes Definition 3 Definition 4

Synchronous
execution Isolated Yes Definition 5 Definition 6

Synchronous
execution Composable Yes Definition 7 Definition 8

Asynchronous
execution
(callback not
applicable) Isolated No Definition 9 Definition 10

Asynchronous
execution
(callback not
applicable) Composable No Definition 11 Definition 12

Synchronous
execution Isolated Yes Definition 13 Definition 14

Synchronous
execution Composable Yes Definition 15 Definition 16

Table 3: PortType lookup table

Definition 1 (Asynch. Execution/Isolated/RA/PIP requester):

<wsdl:portType name="PIP3A20RAAsynchRequestorPortType">
 <wsdl:operation name="ReceiptAcknowledgementOp">
 <wsdl:input name="input1"
message="tns:ReceiptAcknowledgementMsg"/>
 </wsdl:operation>
 <wsdl:operation name="ExceptionOp">
 <wsdl:input name="input2" message="tns:ExceptionMsg"/>
 </wsdl:operation>
</wsdl:portType>

Definition 2 (Asynch. Execution/Isolated/RA/PIP responder):

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 47 1 June 2010

<wsdl:portType name="PIP3A20RAAsynchResponderPortType">
 <wsdl:operation
name="Pip3A20PurchaseOrderConfirmationNotificationOp">
 <wsdl:input name="input1"
message="tns:Pip3A20PurchaseOrderConfirmationNotificationMsg"/>
 </wsdl:operation>
 <wsdl:operation name="ExceptionOp">
 <wsdl:input name="input2" message="tns:ExceptionMsg"/>
 </wsdl:operation>
</wsdl:portType>

Definition 3 (Asynch. Execution/Composable/RA/PIP requester):

<wsdl:portType name="PIP3A20RAAsynchRequestorPortType">
 <wsdl:operation name="ComposableReceiptAcknowledgementOp">
 <wsdl:input name="input1"
message="tns:ComposableReceiptAcknowledgementMsg"/>
 </wsdl:operation>
 <wsdl:operation name="ComposableExceptionOp">
 <wsdl:input name="input2"
message="tns:ComposableExceptionMsg"/>
 </wsdl:operation>
</wsdl:portType>

Definition 4 (Asynch. Execution/Composable/RA/PIP responder):

<wsdl:portType name="PIP3A20RAAsynchResponderPortType">
 <wsdl:operation
name="ComposablePip3A20PurchaseOrderConfirmationNotificationOp">
 <wsdl:input name="input1"
message="tns:ComposablePip3A20PurchaseOrderConfirmationNotificationMs
g"/>
 </wsdl:operation>
 <wsdl:operation name="ComposableExceptionOp">
 <wsdl:input name="input2"
message="tns:ComposableExceptionMsg"/>
 </wsdl:operation>
</wsdl:portType>

Definition 5 (Synch. Execution/Isolated/RA/PIP requester):

NOT DEFINED

Definition 6 (Synch. Execution/Isolated/RA/PIP responder):

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 48 1 June 2010

<wsdl:portType name="PIP3A20RASynchResponderPortType">
 <wsdl:operation
name="Pip3A20PurchaseOrderConfirmationNotificationOp">
 <wsdl:input name="input1"
message="tns:Pip3A20PurchaseOrderConfirmationNotificationMsg"/>
 <wsdl:output name="output1"
message="tns:ReceiptAcknowledgementMsg"/>
 <wsdl:fault name="fault1" message="tns:ExceptionMsg"/>
 </wsdl:operation>
</wsdl:portType>

Definition 7 (Synch. Execution/Composable/RA/PIP requester):

<wsdl:portType name="PIP3A20RASynchRequestorPortType">
 <wsdl:operation name="ComposableExceptionOp">
 <wsdl:input name="input1"
message="tns:ComposableExceptionMsg"/>
 </wsdl:operation>
</wsdl:portType>

Definition 8 (Synch. Execution/Composable/RA/PIP responder):

<wsdl:portType name="PIP3A20RASynchResponderPortType">
 <wsdl:operation
name="ComposablePip3A20PurchaseOrderConfirmationNotificationOp">
 <wsdl:input name="input1"
message="tns:ComposablePip3A20PurchaseOrderConfirmationNotificationMs
g"/>
 <wsdl:output name="output1"
message="tns:ComposableReceiptAcknowledgementMsg"/>
 <wsdl:fault name="fault1"
message="tns:ComposableExceptionMsg"/>
 </wsdl:operation>
 <wsdl:operation name="ComposableExceptionOp">
 <wsdl:input name="input2"
message="tns:ComposableExceptionMsg"/>
 </wsdl:operation>
</wsdl:portType>

Definition 9 (Asynch. Execution/Isolated/No RA/PIP requester):

NOT DEFINED

Definition 10 (Asynch. Execution/Isolated/No RA/PIP responder):

<wsdl:portType name="PIP3A20AsynchResponderPortType">
 <wsdl:operation
name="Pip3A20PurchaseOrderConfirmationNotificationOp">
 <wsdl:input name="input1"
message="tns:Pip3A20PurchaseOrderConfirmationNotificationMsg"/>
 </wsdl:operation>
</wsdl:portType>

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 49 1 June 2010

Definition 11 (Asynch. Execution/Composable/No RA/PIP requester):

<wsdl:portType name="PIP3A20AsynchRequestorPortType">
 <wsdl:operation name="ComposableExceptionOp">
 <wsdl:input name="input1"
message="tns:ComposableExceptionMsg"/>
 </wsdl:operation>
</wsdl:portType>

Definition 12 (Asynch. Execution/Composable/No RA/PIP responder):

<wsdl:portType name="PIP3A20AsynchResponderPortType">
 <wsdl:operation
name="ComposablePip3A20PurchaseOrderConfirmationNotificationOp">
 <wsdl:input name="input1"
message="tns:ComposablePip3A20PurchaseOrderConfirmationNotificationMs
g"/>
 </wsdl:operation>
 <wsdl:operation name="ComposableExceptionOp">
 <wsdl:input name="input2"
message="tns:ComposableExceptionMsg"/>
 </wsdl:operation>
</wsdl:portType>

Definition 13 (Synch. Execution/Isolated/No RA/PIP requester):

NOT DEFINED

Definition 14 (Synch. Execution/Isolated/No RA/PIP responder):

<wsdl:portType name="PIP3A20SynchResponderPortType">
 <wsdl:operation
name="Pip3A20PurchaseOrderConfirmationNotificationOp">
 <wsdl:input name="input1"
message="tns:Pip3A20PurchaseOrderConfirmationNotificationMsg"/>
 <wsdl:fault name="fault1" message="tns:ExceptionMsg"/>
 </wsdl:operation>
</wsdl:portType>

Definition 15 (Synch. Execution/Composable/No RA/PIP requester):

<wsdl:portType name="PIP3A20SynchRequestorPortType">
 <wsdl:operation name="ComposableExceptionOp">
 <wsdl:input name="input1"
message="tns:ComposableExceptionMsg"/>
 </wsdl:operation>
</wsdl:portType>

Definition 16 (Synch. Execution/Composable/No RA/PIP responder):

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 50 1 June 2010

<wsdl:portType name="PIP3A20SynchResponderPortType">
 <wsdl:operation
name="ComposablePip3A20PurchaseOrderConfirmationNotificationOp">
 <wsdl:input name="input1"
message="tns:ComposablePip3A20PurchaseOrderConfirmationNotificationMs
g"/>
 <wsdl:fault name="fault1"
message="tns:ComposableExceptionMsg"/>
 </wsdl:operation>
 <wsdl:operation name="ComposableExceptionOp">
 <wsdl:input name="input2"
message="tns:ComposableExceptionMsg"/>
 </wsdl:operation>
</wsdl:portType>

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 51 1 June 2010

10. Use Cases of PIP Definition (Strict execution
context)
This section shows two sample configurations of PIPs according to the configurability
matrix in section 7.1. Both of the use cases in this section are examples of the Strict
Execution Model, which requires that integration partners achieve agreement upon
the result of PIP executions. Both use cases involve usage of several of the Quality of
Service properties discussed in this document.

10.1 Use Case 1 – Full features

Use Case 1 shows a sample configuration for a Purchase Order Confirmation PIP,
with full Quality of Service features included, along with a Receipt Acknowledgement.
A verbal description follows below the configuration for Use Case 1 shown here:

<DataExchange
 name="bt-PIP3A20"
 nameID="bt-PIP3A20"
 isGuaranteedDeliveryRequired="true">
 <RequestingRole name="Purchase Order Confirmation Sender"
nameID="bt-PIP3A20-role-sender"/>
 <RespondingRole name="Purchase Order Confirmation Receiver"
nameID="bt-PIP3A20-role-receiver"/>
 <RequestingBusinessActivity
 name="Send Purchase Order Confirmation"
 nameID="bt-PIP3A20-ba-req"
 isIntelligibleCheckRequired="true"
 isNonRepudiationRequired="true"
 isNonRepudiationReceiptRequired="true"
 retryCount="3"
 timeToAcknowledgeReceipt="PT3M"
 isAuthorizationRequired="true"
 >
 <DocumentEnvelope
 name="doc-PIP3A20-PurchaseOrderConfirmation"
 businessDocumentRef="doc-PIP3A20-
PurchaseOrderConfirmation"
 nameID="doc-PIP3A20-PurchaseOrderConfirmation-de"
 isAuthenticated="transient"
 isConfidential="transient"
 isTamperDetectable="transient"
 />
 <ReceiptAcknowledgement
 name="ra"
 nameID="bt-PIP3A20-ack-ra"
 signalDefinitionRef="ra2"/>
 <ReceiptAcknowledgementException
 name="rae"
 nameID="bt-PIP3A20-ack-rae"
 signalDefinitionRef="rae2"/>
 </RequestingBusinessActivity>
 <RespondingBusinessActivity name="xsd-pacifier" nameID="bt-

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 52 1 June 2010

PIP3A20-ba-resp"/>
</DataExchange>

This use case utilizes many of the Quality of Service configurations available, and
also involves a Receipt Acknowledgement for business state alignment. These
configurations are described below, with some definitions coming directly from the
ebXML Business Process Specification Schema Technical Specification. Please also
see section 8.2: Realization of QoS above for further information on realization of
these Quality of Service features with the WS MCC Profile.

Receipt Acknowledgement for Business State Alignment:

• A ReceiptAcknowlegement requirement is defined in the configuration for Use
Case 1 like so: <ReceiptAcknowledgement name="ra" nameID="bt-PIP3A20-
ack-ra" signalDefinitionRef="ra2"/>
The Receipt Acknowledgment is used to confirm that the Purchase Order
Confirmation message has been successfully received at the PIP protocol
layer at the receiver side.

• The isIntelligibleCheckRequired attribute is set to “true” for the
RequestingBusinessActivity.
This means that the partners participating in this business transaction are
agreeing that a Receipt Acknowledgment should confirm a message only if it
is also legible, i.e. that it has passed validity checks as defined in section
6.1.3.

• The ReceiptAcknowlegementException is defined like so:
<ReceiptAcknowledgementException name="rae" nameID="bt-PIP3A20-ack-
rae" signalDefinitionRef="rae2"/>
This means that the partners participating in this business transaction are
agreeing to send a ReceiptAcknowledgementException in case the incoming
PIP business document cannot be processed correctly. In particular, as the
isIntelligibleCheckRequired attribute is set to “true”, partners have to send a
ReceiptAcknowledgementException in case the validity checks as defined in
section 6.1.3 cannot be performed successfully.

Security Features:

• isAuthorizationRequired is set to "true" for RequestingBusinessActivity.
This specifies that the PO Confirmation message must only be processed as
valid if the receiving party successfully matches the stated role of the activity
to a list of allowed values previously supplied by the requesting party. In this
use case, the Requesting Role name is “Purchase Order Confirmation Sender”
and the Requesting Role ID is “bt-PIP3A20-role-sender.” Authorization is
described in further detail in section 8.2 above.

• Document Envelope settings:

o isAuthenticated is set to “transient.”
This means that authentication is implemented at the communication
(SOAP/HTTP) level. The specific method is determined by the
communications protocol used. If this had been set to “persistent,” it

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 53 1 June 2010

would mean that “the Business Document signer’s identity must be
verified at the receiving application level” (cf. ebBP spec.), to assist in
verification of role identity.
Note that the configuration option “persistent” is NOT allowed for in
the Strict Execution Model.

o isConfidential is also set to "transient.”
Transient confidentiality is provided by a secure network protocol, as
the message is transferred between two adjacent transport messaging
nodes. In comparison, “persistent” confidentiality would mean that
“the message must remain in encrypted form after it is delivered to
the messaging node and will be decrypted only by the authorized
application” (cf. ebBP spec.).
Note that the configuration option “persistent” is NOT allowed for in
the Strict Execution Model.

o isTamperDetectable is set to "transient.”
This provides the ability to detect if the information has been
tampered with during transfer between two adjacent transport
messaging nodes.
If set to “persistent,” it would provide the “ability to detect if the
information has been tampered with after it has been received by
messaging node, between the messaging node and the application.
Tamper detection assists in verification of content integrity between
participating parties and within a participating party” (cf. ebBP spec.).
Note that the configuration option “persistent” is NOT allowed for in
the Strict Execution Model.

Reliable Messaging:

• isGuaranteedDeliveryRequired is set to "true" for the Data Exchange.
This is a declaration that the sender and receiver must employ only a delivery
channel that provides a delivery guarantee for this business transaction’s
business messages AND business signals.

Non Repudiation and Non Repudiation of Receipt:

• isNonRepudiationRequired is set to "true" for the RequestingBusinessActivity.
This means that the PIP requester must add a fresh digital signature to the
business document message so that she cannot claim later not to have sent
the message or to have a sent a message with different content. The PIP
responder, in turn, is assumed to persistently store the business document
message together with its signature.

• IsNonRepudiationReceiptRequired is set to "true” for the
RequestingBusinessActivity.
This setting requires the receiver of the PO Confirmation document to send a
signed receipt, which the original PIP requester saves. In order for the
NonRepudiationOfReceipt mechanism to function properly,
ReceiptAcknowledgement must also be required in the business transaction
(which it is in this use case). This is because it requires the Receipt Ack to be

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 54 1 June 2010

digitally signed or a comparable mechanism be used.
“If a timeToAcknowledgeReceipt is also imposed on a requesting message
(which it also is here), only a digitally signed (or comparable mechanism)
receipt will satisfy the imposed timeout deadline. Thus, a Failure to send a
signed receipt within timeToAcknowledgeReceipt, would make the transaction
null and void, i.e. the agreed upon expectations of business significance of
the Requesting party has not been adhered to in the activity” (cf. ebBP
spec.).

Timing Constraints:

• timeToAcknowledgeReceipt is set to "PT3M" for the
RequestingBusinessActivity.
“PT3M” stands for “Period of Time of 3 Minutes.” This means that the Receiver
of the PO Confirmation message must send a Receipt Acknowledgement
within 3 minutes. The start point is the time the PO Confirmation document is
sent by the Requesting Party, and the end point is the time until the time that
the Receipt Acknowledgement is properly received by the Requesting party.

retryCount is set to "3" for Use Case 1, which means that the transmission of this
message from the sender will be attempted three times before the PIP is considered
as failed.

Based on the above descriptions, it can been seen that Use Case 1 is an example of
the full usage of the Quality of Service features. In addition, as is described in
section 8.2, it is assumed that a message that is successfully delivered at the
messaging level will also successfully be delivered at the application level. In Use
Case 1 we are making use of the Receipt Acknowledgement (without any
specification for an Acceptance Acknowledgement, which is not covered by the MCC
WS Profile document).

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 55 1 June 2010

10.2 Use Case 2 – Business Document Only

Use Case 2 shows a sample configuration for a Purchase Order Confirmation PIP,
which also follows the Strict Execution model. However, in comparison with Use Case
1, it implements less of the Quality of Service and Business State Alignment
features, and it also does not specify a requirement for a Receipt Acknowledgement.
A verbal description and comparison with Use Case 1 follows below:

<DataExchange
 name="bt-PIP3A20"
 nameID="bt-PIP3A20"
 isGuaranteedDeliveryRequired="true">
 <RequestingRole name="Purchase Order Confirmation Sender"
nameID="bt-PIP3A20-role-sender"/>
 <RespondingRole name="Purchase Order Confirmation Receiver"
nameID="bt-PIP3A20-role-receiver"/>
 <!-- No TTAR, no isIntelligibleCheckRequired and no
isNonRepudiationReceiptRequired -->
 <RequestingBusinessActivity
 name="Send Purchase Order Confirmation"
 nameID="bt-PIP3A20-ba-req"
 isNonRepudiationRequired="true"
 retryCount="1"
 >
 <DocumentEnvelope
 name="doc-PIP3A20-PurchaseOrderConfirmation"
 businessDocumentRef="doc-PIP3A20-
PurchaseOrderConfirmation"
 nameID="doc-PIP3A20-PurchaseOrderConfirmation-de"
 isAuthenticated="transient"
 isConfidential="transient"
 isTamperDetectable="transient"
 />
 <!-- No ReceiptAcknowledgement/Exception definitions here -->
 </RequestingBusinessActivity>
 <RespondingBusinessActivity name="xsd-pacifier" nameID="bt-
PIP3A20-ba-resp"/>
</DataExchange>

As mentioned, Use Case 2 involves several Quality of Service specifications for
business state alignment, though notably less than Use Case 1. These specifications
are described below, with some definitions coming directly from the ebXML Business
Process Specification Schema Technical Specification. Please also see section 8.2:
Realization of QoS above for further information on realization of these Quality of
Service features.

Receipt Acknowledgement for Business State Alignment:

• There are no acknowledgements specified for this use case. Use Case 1

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 56 1 June 2010

involves a Receipt Acknowledgement, but Use Case 2 does not specify this
requirement. This means that there is no requirement for the Receiver of the
PO Confirmation message to send any acknowledgement of receipt (at the PIP
protocol layer) back to the Sender.

Security:

• isAuthorizationRequired is not specified in Use Case 2.
This means that there may be no validation that the sending or receiving
parties in this business transaction match up with any list of authorized
entities.

• Document Envelope settings:

o isAuthenticated is set to “transient.”
This means that authentication is implemented at the communication
level. The specific method is determined by the communications
protocol used.
If this had been set to “persistent,” it would mean that “the Business
Document signer’s identity must be verified at the receiving
application level” (cf. ebBP spec.), to assist in verification of role
identity.
Note that the configuration option “persistent” is NOT allowed for in
the Strict Execution Model.

o isConfidential is also set to "transient.” Transient confidentiality is
provided by a secure network protocol, as the message is transferred
between two adjacent transport messaging nodes.
In comparison, “persistent” confidentiality would mean that “the
message must remain in encrypted form after it is delivered to the
messaging node and will be decrypted only by the authorized
application” (cf. ebBP spec.).
Note that the configuration option “persistent” is NOT allowed for in
the Strict Execution Model.

o isTamperDetectable is set to "transient.”
This provides the ability to detect if the information has been
tampered with during transfer between two adjacent transport
messaging nodes. If set to “persistent,” it would provide the “ability
to detect if the information has been tampered with after it has been
received by messaging node, between the messaging node and the
application. Tamper detection assists in verification of content integrity
between participating parties and within a participating party” (cf.
ebBP spec.).
Note that the configuration option “persistent” is NOT allowed for in
the Strict Execution Model.

Reliable Messaging:

• isGuaranteedDeliveryRequired is set to "true" for the Data Exchange.
This is a declaration that the sender and receiver must employ only a delivery

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 57 1 June 2010

channel that provides a delivery guarantee for this business transaction’s
business message.

Non Repudiation and Non Repudiation of Receipt:

• isNonRepudiationRequired is set to "true" for the RequestingBusinessActivity.
This means that the PIP requester must add a fresh digital signature to the
business document message so that she cannot claim later not to have sent
the message or to have a sent a message with different content. The PIP
responder, in turn, is assumed to persistently store the business document
message together with its signature.

• IsNonRepudiationReceiptRequired is not specified as a requirement in Use
Case 2. Since there is no Receipt Acknowledgement in this use case,
IsNonRepudiationReceiptRequired will not come into play, as usage of this
parameter requires and utilizes the Receipt Ack.

Timing Constraints:

• There is no timeToAcknowledgeReceipt specified in Use Case 2. Since there is
no Receipt Acknowledgement required, then a requirement of a time to
acknowledge receipt would not come into play here.

retryCount is set to "1" for Use Case 2, which means that the transmission of this
message from the sender will only be attempted once before the PIP is considered as
failed.

So as shown above, the configuration of the Purchase Order Confirmation PIP is less
stringent than in Use Case 1. However it does involve usage of several of the Quality
of Service features available, and as such it does involve agreement between the
integration partners upon the result of PIP execution, and falls into the Strict
Execution Model.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 58 1 June 2010

11. Use Case realization (Strict execution context)
This section is non-normative.

For use case 1 of the previous section, prototypic implementations of the control flow
of messages are provided as BPEL process definitions:

• composablePIP3A20-RA-Asynch-v1.0.9.zip contains sample BPEL
process definitions of PIP requester and PIP responder for the Asynchronous
execution with callback MEP (cf. section 7.2). It uses the RosettaNet
composition header structure and a RosettaNet conversion XSD for PIP 3A20.
The control flow of the requester and the responder BPEL process is visualized
in figures Figure 11 and Figure 12 that show one valid way of integrating the
message exchanges between PIP partners and existing business applications
(integration with legacy systems is NOT subject to specification of this
profile). Existing business applications are explicitly represented by the BE (=
backend) roles where both the PIP requester and the PIP responder
communicate with their private BE processes. For the PIP responder, the RAC
(=ReceiptAcknowledgementCreation service) role encapsulates the
functionality for performing validity checks and creating RAs or RAEs.
Note that communication between the PIP requester BPEL process and its
backend as well as between the PIP responder BPEL process and its RAC and
backend are assumed to be safe, i.e., no messages are lost. Moreover, it is
assumed that the BPEL primitives used avoid firing two separate transitions of
one single state machine at the same time.

The semantics of the process visualizations in figures Figure 11 and Figure 12
correspond to the protocol definitions of section 8.3 (please cf. above).

o XX?yy denotes the event of receiving message yy from role XX

o XX!yy denotes the event of sending message yy to role XX (and
successful delivery because of the strict execution context)

o XX!yyFail denotes the event of unsuccessfully trying to send message
yy to role XX. Note that this is a LOCAL event of the sending process.

o toTTP and toRA denote the local events that the timeToPerform or the
timeToAcknowledgeReceipt timers have run out

• simplifiedPIP3A20-RA-Synch-v1.0.9.zip contains sample BPEL process
definitions of PIP requester and PIP responder for the Synchronous
execution MEP (cf. section 7.2). It does not use the RosettaNet composition
header structure, but it uses a RosettaNet conversion XSD for PIP 3A20.

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 59 1 June 2010

Figure 11: Requester Control Process with Example Backend Integration

MCC Release 11.00.00A Profile - Web Services

©2010 RosettaNet. All Rights Reserved. 60 1 June 2010

Figure 12: Responder Control Process with Example Backend Integration

