
©2004 RosettaNet. All Rights Reserved.

Technical Recommendation

RosettaNet Implementation Framework V02.00.01

High Availability Features

Issue 01.00.00

17 December 2004

 Technical Recommendation:
Architecture Office Issue 01.00.00 High Availability Features

©2004 RosettaNet. All Rights Reserved. i 17 December 2004

Table of Contents

1 Document Management ...iii
1.1 Legal Disclaimer..iii
1.2 Copyright ...iii
1.3 Trademarks ..iii
1.4 Acknowledgements..iii
1.5 Related Documents... iv
1.6 Purpose .. iv
1.7 Scope... iv
1.8 Conformance Statement .. iv
1.9 Document Conventions.. iv
1.10 Document Version History .. iv

2 Introduction.. 1
2.1 Terms ... 1
2.2 Issue... 1

3 High Availability Features .. 2
3.1 Business Case... 2
3.2 Attributes of Failures .. 2

3.2.1 Transfer Protocol Failure ... 3
3.3 Current Situation... 3
3.4 Detecting Permanent Failure .. 4

3.4.1 HTTP Failures.. 4
3.4.2 RNIF Message Failures.. 5
3.4.3 RNIF Implementation Failure ... 5

3.5 Recovery Strategy ... 6
3.6 Reaction to Temporary Failure ... 6

3.6.1 HTTP Error Codes 502 and 503 .. 6
3.6.2 Retry Algorithm and Pacing Algorithm ... 8
3.6.3 RNIF Implementation Failure ... 9

3.7 Reaction to Permanent Failure ... 9
3.8 Using Notification of Failure (PIP0A1) .. 9

4 Benefits ... 11

5 Implementation Considerations ... 12

 Technical Recommendation:
Architecture Office Issue 01.00.00 High Availability Features

©2004 RosettaNet. All Rights Reserved. ii 17 December 2004

6 References .. 13

 Technical Recommendation:
Architecture Office Issue 01.00.00 High Availability Features

©2004 RosettaNet. All Rights Reserved. iii 17 December 2004

1 Document Management

1.1 Legal Disclaimer

RosettaNet™, its members, officers, directors, employees, or agents shall
not be liable for any injury, loss, damages, financial or otherwise, arising
from, related to, or caused by the use of this document or the
specifications herein, as well as associated guidelines and schemas. The
use of said specifications shall constitute your express consent to the
foregoing exculpation.

1.2 Copyright

©2004 RosettaNet. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher. Printed in the United
States of America.

1.3 Trademarks

RosettaNet, Partner Interface Process, PIP and the RosettaNet logo are
trademarks or registered trademarks of “RosettaNet,” a non-profit
organization. All other product names and company logos mentioned
herein are the trademarks of their respective owners. In the best effort, all
terms mentioned in this document that are known to be trademarks or
registered trademarks have been appropriately recognized in the first
occurrence of the term.

1.4 Acknowledgements

RosettaNet acknowledges the following companies for contributing towards
this document:

- Cisco Systems

- Fujitsu

- Hewlett Packard

- Intel

- NTT Communications

- Sony EMCS

- Sterling Commerce

 Technical Recommendation:
Architecture Office Issue 01.00.00 High Availability Features

©2004 RosettaNet. All Rights Reserved. iv 17 December 2004

1.5 Related Documents

• RosettaNet Implementation Framework: Core Specification 2.0
[RNIF20]

1.6 Purpose

RosettaNet Implementation Framework 2.0 (RNIF 2.0) describes some
failure handling procedures. This Technical Recommendation (TR) describes
additional procedures for failure handling.

1.7 Scope

This document contains information describing enhancements to the RNIF
2.0 Specification regarding failure handling. This document does not
contain any other RNIF changes or information regarding PIPs.

1.8 Conformance Statement

Compliance to the enhancements described in this TR is mandatory, only if
failure handling procedures for the situations described in this specification
is available in an RNIF 2.0 implementation. Applications that conform to
this TR MUST still conform to all requirements of [RNIF20] and relevant
Technical Advisories unless explicitly overruled in this TR.

1.9 Document Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to
be interpreted as described in [RFC2119].

The terms PIP Instance, PIP Initiator, and PIP Responder are defined in
[RNIF20].

1.10 Document Version History
Version Date Description
Issue 1.00.00 17 December 2004 Publication to the membership

 Technical Recommendation:
Architecture Office Issue 01.00.00 High Availability Features

©2004 RosettaNet. All Rights Reserved. 1 17 December 2004

2 Introduction

This Technical Recommendation (TR) prescribes changes to the RosettaNet
Implementation Framework 2.0 (RNIF 2.0) for some failure handling situations.

2.1 Terms

The terms Action, Signal, PIP Instance, PIP Initiator, PIP Responder are
defined in [RNIF20].

2.2 Issue

This Technical Recommendation enhances the techniques described in
Section 2.6.4 of RNIF 2.0 Specification to address different types of
communication failures. The immediate concern is the ability to address
temporary failures caused by a large number of PIP transactions.

 Technical Recommendation:
Architecture Office Issue 01.00.00 High Availability Features

©2004 RosettaNet. All Rights Reserved. 2 17 December 2004

3 High Availability Features

This Technical Recommendation (TR) describes a limited number of ways a
failure can occur while communicating RNIF messages with trading
partners; and recommends procedures to recover from such failures. Any
of the following failures could happen during a RNIF based communication.

1. Transfer Protocol failure (e.g., HTTP)

2. (RNIF) message failure (e.g., non-receipt of an expected Receipt
Acknowledgement)

3. (RNIF) implementation failure (e.g., a server hosting the RNIF
implementation fails)

This TR addresses some of these failures. The failures could be permanent
or temporary. While it may be possible to recover from some failures based
on the techniques described in this paper, recovery is not guaranteed in all
situations.

3.1 Business Case

RNIF messaging service is currently installed in hundreds of sites. The
software solution that implements RNIF uses a finite amount of hardware
resources, and its ability to handle peak load of connections (sometimes in
excess of 50K messages per hour) can vary based on the specific hardware
or the vendor of the solutions.

Under these circumstances, RNIF will be left responding with “busy”
signals. Sometimes, low-end RNIF solutions may simply drop connections,
leaving the peer RNIF at the other side of the Internet wondering what
happened. It has been observed by some RNIF implementers that by
defining standard behavior for such failures could help trading partners
recover from failures more quickly and improve overall messaging
performance with moderate hardware resources. Note: These issues are
not specific to RosettaNet, and can happen on any HTTP traffic.

There should be a solution that addresses peak load issues and brings
closure dropped connections. RosettaNet would like to address this problem
and provide a solution in a standardized way to promote interoperability
among all RNIF implementations.

3.2 Attributes of Failures

Failures may be anticipated or unanticipated. Some failures may be caused
by scheduled service shutdowns. If the communicating partner is unaware
of such shutdowns, the communicating partner may assume a failure.
Similarly, a change of system configuration at a site may cause disruption
of communication with that site, making the communicating partner to
assume a failure. This TR does not distinguish between these anticipated
and unanticipated failures.

 Technical Recommendation:
Architecture Office Issue 01.00.00 High Availability Features

©2004 RosettaNet. All Rights Reserved. 3 17 December 2004

Failure is Relative: A “failure” is relative to a Trading Partner (TP), in that
TP A may perceive a failure at TP B, while Sender TP C may not perceive a
failure at TP B within the same time period!

Before or After: Failures may exist prior to creating a PIP Instance, or a
failure may happen during the execution of a PIP Instance. Thus, either PIP
Initiator or PIP Responder may fail during a PIP message exchange.

One or Both: PIP Initiator and PIP Responder may also fail
simultaneously. Therefore, the solution described must address single or
multiple failures of the PIP Initiator and PIP Responder. In this TR, we do
not distinguish between PIP Initiator and PIP Responder. Instead we use
the roles (message) Sender and (message) Receiver, because either PIP
Initiator or PIP Responder could be a sender or a receiver for different
messages.

3.2.1 Transfer Protocol Failure

The only Transfer Protocol we consider in this TR is HTTP.

In RNIF2.0, two HTTP response codes, 200 or 202 (Section 2.4.2.2
“Processing Inbound HTTP Posts”) MUST be returned for a successful HTTP
communication. Response code 200 is used for synchronous HTTP requests
and 202 is used for asynchronous HTTP requests.

RNIF 2.0 states that “3xx, 4xx and 5xx error conditions must be dealt with
in the usual way, governed by the local policy.” This TR describes a
standardized manner in which to handle HTTP response codes of 500
(internal error), 502 (Service Temporarily Overloaded), and 503 (Service
Unavailable) are received, or when no response code is received within an
anticipated time.

3.3 Current Situation

Today, when a Receiver gets an HTTP error code of 502 or 503, it is free to
discard the message, or do some action based on local policy. When a
Sender receives these error codes, it may do any of the following:

1. Pretend nothing happened.

2. Assume a permanent communication failure has occurred. Send a
Notification of Failure (PIP0A1). Restart the PIP Instance after some
phone calls, or after some indefinite period.

3. Assume a temporary failure has happened, and initiate a retry
algorithm.

Reaction (1) above is not appropriate.

Reaction (2) is not always correct, since a “busy” signal is usually a
temporary phenomenon. Restarting the PIP Instance is not quite
necessary, and is a waste of resources and time.

 Technical Recommendation:
Architecture Office Issue 01.00.00 High Availability Features

©2004 RosettaNet. All Rights Reserved. 4 17 December 2004

Reaction (3) is not very efficient in that the retry algorithm requires a retry
only every 2 hrs. Usually, the “busy” situation gets better in a few minutes.
Additionally, the retry algorithm is not exactly suitable for resolving HTTP
issues, since it is aimed at resolving issues such as non-receipt of a
Receipt-Acknowledgement or RNIF Exception messages.

However, a standardized algorithm to resolve HTTP busy messages (error
codes 502 and 503) that can execute a few times within a retry window
may considerably improve the scenario described above.

3.4 Detecting Permanent Failure

At the outset, the communicating partner may not know whether the
failure in communication is permanent or only temporary. Detecting
whether a failure in communication is permanent or temporary is an
important step in recovering from a failure.

A permanent failure occurs when the current PIP transaction needs to be
aborted, and communication with the trading partner in other ways than
using the existing HTTP connection is required to resolve the problem.

All other problems are considered temporary. This section describes how to
identify permanent failures from temporary failures.

Sometimes, it is not possible to classify a failure as permanent until some
recovery strategy is attempted.

3.4.1 HTTP Failures

The failure classification for HTTP applies to only asynchronous RNIF
requests. In the case of synchronous requests, resending the message is
recommended.

Received HTTP Response Code Classification & Action

500 Internal Error A permanent failure. Local policy at
the receiver dictates action.

502 Service Temporarily
Overloaded - Server congestion;
too many connections; high traffic.

A temporary failure. See “Section
3.4, Reaction to Temporary Failure”
below.

 Technical Recommendation:
Architecture Office Issue 01.00.00 High Availability Features

©2004 RosettaNet. All Rights Reserved. 5 17 December 2004

503 Service Unavailable - Server
busy, site may have moved, you
lost your internet connection or the
quality your internet connection is
poor at the time.

A temporary failure. See “Section
3.4, Reaction to Temporary Failure”
below.

3.4.2 RNIF Message Failures

Even when HTTP layer does not indicate any errors, RNIF message failures
can still occur. These RNIF message failures and recovery methods are not
specific to underlying protocol. An RNIF message failure occurs in any of
the following cases:

1. No signal arrives from a PIP Responder. Obviously, this event implies
the lack of receipt of an HTTP response as well.

2. An RNIF Exception signal arrives from a PIP Responder.

We consider both of these cases below in some more detail.

3.4.2.1 No Signal

Section 2.6.4.1 of RNIF 2.0 describes how to handle a case when a
Receipt-Acknowledgement is not received. When no signals (Receipt-
Acknowledgement or Exception) or action messages are received after the
Time-to-Acknowledge * (Retry Count + 1)1, then a permanent failure has
occurred. In this case, a retry message may be sent following the
guidelines in Section 2.6.4 through Section 2.6.8 of RNIF 2.0.

3.4.2.2 Exception Signal

A receipt of an exception signal is considered a temporary failure of the
RNIF messaging layer. In this case, the PIP Instance may be aborted
following the guidelines in [RNIF20].

3.4.3 RNIF Implementation Failure

When an RNIF implementation fails at TP B while executing a PIP Instance
with TP A, it is manifested as an RNIF message failure to TP A. Such a
failure may be perceived as temporary or permanent by TP A.

1 “*” symbol stands for multiplication

 Technical Recommendation:
Architecture Office Issue 01.00.00 High Availability Features

©2004 RosettaNet. All Rights Reserved. 6 17 December 2004

3.5 Recovery Strategy

Once a failure is identified as temporary or permanent, it is possible to go
to the next step, recovering from the failure (see Figure 1 below). A
temporary failure is an intermittent failure.

Checkpoint &
RecoveryPacing

Checkpoint &
RecoveryPacing

Pe
rm

an
en

t
T

em
po

ra
ry

Communication Server

Abort &
Out-of-band Communication

Figure 1: Strategies for Recovery

When a failure is detected, then the communicating partner may react to it
in a variety of ways. If the failure is temporary, retries could be attempted
or recovery can be attempted by saving contexts at checkpoints in the PIP
Instance execution. If the failure is permanent, actions can be taken based
on local policy. We go into details of reacting to failure presently.

3.6 Reaction to Temporary Failure

3.6.1 HTTP Error Codes 502 and 503

When the above error codes are received by TP A from TP B, the following
approach is recommended. The context for this recovery approach is the
following: When either of these error codes is received at TP A, it is quite
possible that the HTTP server of TP B is overloaded, or somehow not able
to react. In such a situation, TP A should reduce the frequency of messages
to TP B so as to not overload the server at TP B any further. At the same
time, TP A would want to monitor the situation at TP B, and therefore
should continue to resend messages. The concepts of Pacing Interval and
Pacing Count are useful here.

 Technical Recommendation:
Architecture Office Issue 01.00.00 High Availability Features

©2004 RosettaNet. All Rights Reserved. 7 17 December 2004

Pacing Interval: The time period between two consecutive resends of the
action message during the Pacing Algorithm execution.

Pace Count: A Pace Count defines the maximum number of times a
message will be resent to the TP A during Pacing Algorithm execution.

Figure 2: Pacing Algorithm

The Pacing Algorithm below applies for HTTP based asynchronous request
and response.

Pacing Algorithm

Preconditions:

1. TP A has defined Pacing Interval and Pace Count
2. TP A receives HTTP error code 502 or 503 from TP B.
3. TP A is the Sender and TP B is the Receiver.

Steps:

1. TP A resends the message (action or signal) Pace Count times, every
such resend happening after the elapse of a Pacing Interval. Thus, the
last message will be resent at (Pace Interval * Pace Count) period, after
the initial receipt of the error codes at TP A, during this instance of the
Pacing Algorithm.

.
Execute Pacing Algorithm

Busy?

Yes

No

Sender A Receiver B

3. Resend Message

2. HTTP Response “Busy”

(502 or 503)
The Pacing Interval

(200 or 202)
Normal
Process

Disregard PIP
Request…

If Pacing Algorithm terminates,

concluding “permanent failure”,

fallback on Retry Algorithm.

Normal
Process

4. HTTP Response “OK”

1. PIP Request on HTTP

 Technical Recommendation:
Architecture Office Issue 01.00.00 High Availability Features

©2004 RosettaNet. All Rights Reserved. 8 17 December 2004

2. If TP A continues to receive either of the HTTP error codes 502 or 503
for all resends during this instance of the Pacing Algorithm, or receives
no responses to the resends, TP A concludes that TP B has a permanent
failure. On the other hand, TP B may respond with a normal reaction (a
Receipt Acknowledge, Exception, or a Response message). In either
case, Pacing Algorithm concludes.

3. If a Notification of Failure (PIP 0A1) arrives from TP B during this
instance of Pacing Algorithm, Pacing Algorithm concludes. Pacing
Algorithm will not be applied for sending PIP 0A1, since this will cause a
vicious recursion.

4. While this algorithm is executing, no new PIP Instances must be
initiated by TP A to send to TP B. However, Response Action messages
and signals may be sent to TP B.

Post Condition

1. TP A concludes TP B has a communication failure, and whether it is
permanent or temporary, OR

2. TP A concludes TP B has no communication failure (with a signal or PIP
0A1)

Notes

1. It is possible that both TP A and TP B are executing a Pacing Algorithm
at the same time. Since a Pacing Algorithm is guaranteed to conclude,
the end result can be either a successful conclusion of the PIP Instance,
or a failure at one or both TP from the other TP’s perspective.

2. If the Pacing Algorithm concludes a permanent communication failure,
retry based on Retry message is to be started 2hrs after the send prior
to invoking Pacing Algorithm.

3. Pacing Interval and Pacing Count must be agreed between partners.

4. Pacing Algorithm is applied only for Asynchronous (HTTP) Messages.

3.6.2 Retry Algorithm and Pacing Algorithm

The RNIF Retry Algorithm and the Pacing Algorithm described below are
different, while they are related. The important differences are below:
• Retry Algorithm is not intended for HTTP failures, rather for non-receipt

of Receipt Acknowledgement or RNIF Exceptions. Pacing Algorithm is
intended for HTTP failures.

• When the HTTP Server is busy, or unavailable, no Receipt
Acknowledgement can be sent. This means when this HTTP failure
occurs, the Retry Algorithm is not executed until after Time-to-
Acknowledgement is complete.

• The Retry algorithm is defined only for Action messages. The Pacing
Algorithm is for both Signal and Action Messages.

 Technical Recommendation:
Architecture Office Issue 01.00.00 High Availability Features

©2004 RosettaNet. All Rights Reserved. 9 17 December 2004

The Pacing Interval is different from the “Time-to-Acknowledge interval”
used with Retry Algorithm, though the concept is similar. The Pacing
Interval is considerably less (typically 5 minutes), than the Time-to-
Acknowledge, which is 2 hours. The Retry Count is 3, whereas, the Pacing
Count can be 10. The relationship between the RNIF Retry Algorithm and
HTTP Pacing Algorithm is the Pacing Algorithm is executed between two
consecutive retry of action messages, or after the last retry of the action
message, as per the RNIF retry algorithm. The following must hold in all
situations:

Pacing Interval * (Pacing Count +1) < Time-to-Acknowledge.

3.6.3 RNIF Implementation Failure

The recovery approach may differ based upon when the failed RNIF
implementation is restarted. There are two cases:

1. RNIF Implementation at TP A restarts before TP B concludes TP A has a
permanent failure. In this case, if TP A had stored a PIP Instance
context after its last received message, it could respond to the resends
from TP B as if no failure happened. If TP A did not store such contexts,
it may send a PIP 0A1 to TP B, thus aborting the current PIP Instance.

2. RNIF Implementation at TP A restarts after TP B concludes TP A has a
permanent failure. In this case, TP B must have already sent a PIP 0A1
to TP A to abort the current PIP Instance. The next logical step for TP A
is to abort the PIP Instance.

3.7 Reaction to Permanent Failure

When a permanent failure is detected at TP A by TP B, TP B MUST send a
PIP 0A1 to TP A to abort the current PIP Instance, according to the
guidelines in Section 2.6.4 to Section 2.6.8 of RNIF 2.0. However, there is
no guarantee that PIP 0A1 will reach TP A. Additional responses to the
situation by TP B is based on the local policy at TP B. There are varieties of
local policies possible. Here is an incomplete list of possibilities:

1. Contact the failing TP through other means such as email, phone, fax,
to fix the problem.

2. Wait for some time (as specified in the local policy), and check the
failure has gone away using the Pacing Algorithm.

3. The Notification of Failure (PIP 0A1, phone, fax,…) must be processed
by the receiver to be successful – just receiving is not enough!

3.8 Using Notification of Failure (PIP0A1)

This TR has identified when permanent failure occurs. Section 2.6.8 of the
RNIF 2.0 specification provides additional guidance on sending PIP 0A1.

Given the importance of PIP 0A1, we recommend the following:

 Technical Recommendation:
Architecture Office Issue 01.00.00 High Availability Features

©2004 RosettaNet. All Rights Reserved. 10 17 December 2004

1. The system readiness to receive PIP 0A1 is required. (RNIF
specification allows any partners to send PIP 0A1 to any partners.)

2. The sender of PIP 0A1 is responsible for resolving errors occurring
from aborting a PIP Instance at its site. It is worthwhile preparing
for manual operations procedures for this purpose.

3. It is also helpful to have prior agreement with trading partners on
when PIP 0A1 will be used.

 Technical Recommendation:
Architecture Office Issue 01.00.00 High Availability Features

©2004 RosettaNet. All Rights Reserved. 11 17 December 2004

4 Benefits

Using this high availability technique described in this TR has the following benefits:

1. One TP is able to determine whether the other TP has a permanent failure or has
shut down. This results in more effective communication with the failing partner
through other means, as well as, efficient failure monitoring with reduced
messages to the failing partner.

2. Recovery in some intermittent failure situations is possible, and the appropriate
way to do that is defined in this TR.

Note that the techniques defined in this TR, while useful in the scenarios described, may
also work for other failure scenarios. However, the scope of the TR doesn’t cover those
additional failure scenarios.

 Technical Recommendation:
Architecture Office Issue 01.00.00 High Availability Features

©2004 RosettaNet. All Rights Reserved. 12 17 December 2004

5 Implementation Considerations

1. It is advised that the Time to Acknowledge is at least greater than the Pacing
Interval for the corresponding action message. It would be advisable for the Time
to Acknowledge to be several times the Pacing Interval.

2. The least value of Pacing Interval and the maximum value of Pace Count may
need to be agreed upon by the partners for communication in both directions.
These values may be different for different TPs because each partner may have
different system capacity.

3. When the Pacing Algorithm is being executed, if any new PIP Instances were
initiated, the resulting messages must not be sent to the trading partner.
However, such messages may be queued at the trading partner for future
transmission at the favorable conclusion of the Pacing Algorithm.

4. The Pacing Algorithm may be implemented as described in the figure below, as
part of RNIF implementation.

B
ac

k
-e

nd
 P

ro
ce

ss RNIF

Process

RNIF

Process

B
ac

k-
en

d
P

ro
ce

ss

P
ac

in
g

 A
lg

o
ri

th
m

 Im
p

le
m

en
ta

ti
o

n

(p
ro

ce
ss

 r
ec

ei
ve

d
 5

02
/5

03
)

S
en

d
 5

02
/5

03
 a

s
ap

p
ro

p
ri

at
ehttp Request

http Response

http
connection

×

PIP
message
is not
accepted
when over
loaded

Sender A Receiver B

Figure 3: Pacing Algorithm Implementation

5. Note that there is an implicit assumption in the Pacing Algorithm that the Pacing
Interval is the same between the resending of messages. This assumption is not
necessarily true in some implementations. In such cases, the constraint

Pacing Interval * (Pacing Count +1) < Time-to-Acknowledge

will need to be redone so that the sum of all the Pacing Intervals is less than Time-
to-Acknowledge.

6. While this Technical Recommendation specifically applies to RNIF 2.0, a Solution
Provider or an Implementer may implement this for RNIF 1.1, as well.

 Technical Recommendation:
Architecture Office Issue 01.00.00 High Availability Features

©2004 RosettaNet. All Rights Reserved. 13 17 December 2004

6 References

[RNIF20] “RosettaNet Implementation Framework: Core Specification,” Version
V02.00.01, March 6, 2002.

