
Copyright 1999 by RosettaNet. All rights reserved

RosettaNetRosettaNetRosettaNetRosettaNet
Implementation FrameworkImplementation FrameworkImplementation FrameworkImplementation Framework

SpecificationSpecificationSpecificationSpecification

Status: ReleaseStatus: ReleaseStatus: ReleaseStatus: Release

Version: 1.1Version: 1.1Version: 1.1Version: 1.1

Date: 8 November 1999Date: 8 November 1999Date: 8 November 1999Date: 8 November 1999

Copyright 1999 by RosettaNet. All rights reserved i

Legal DisclaimerLegal DisclaimerLegal DisclaimerLegal Disclaimer

THE DRAFT SPECIFICATIONS SET FORTH HEREIN ARE FOR
DISCUSSION PURPOSES ONLY. THIS IS A WORKING DOCUMENT

AND IS NOT INTENDED FOR COMMERCIAL USE OR PUBLIC
DISSEMINATION. NEITHER ROSETTANET NOR ITS MEMBERS

SHALL BE RESPONSIBLE FOR ANY LOSS RESULTING FROM
ANY USE OF THIS DOCUMENT OR THE SPECIFICATIONS HEREIN.

Other AcknowledgementsOther AcknowledgementsOther AcknowledgementsOther Acknowledgements

"The Open Buying on the Internet (OBI)™ Technical Specifications (v1.1) document is Copyright ©
June 1998 The OBI Consortium, Inc. All Rights Reserved. OBI and the phrase "Open Buying on the
Internet" are registered trademarks of the OBI Consortium. All other trademarks and service
marks are the property of their respective holders.

Permission is granted by the OBI Consortium to RosettaNet for use of portions of The Open Buying
on the Internet (OBI)™ Technical Specifications (v1.1) document."

Copyright 1999 by RosettaNet. All rights reserved iii

ContentsContentsContentsContents

Version History ...vii

Executive Summary... ix

Preface ... xi

1 Introduction ...15

1.1 ROSETTANET BUSINESS MODEL ... 15
1.2 PARTNER INTERFACE PROCESS (PIP) GUIDELINES .. 17
1.3 ROSETTANET NETWORKED APPLICATION ARCHITECTURE ... 18

2 Partner Interface Process (PIP) Specifications..20

2.1 PIP BUSINESS MESSAGE STRUCTURE.. 21
2.1.1 Message Preamble .. 21
2.1.2 Message Header.. 22
2.1.3 Message Content ... 22

2.2 ROSETTANET MESSAGE GUIDELINE FORMAT ... 22

3 RosettaNet Networked Application Protocols ...23

3.1 MESSAGE-PACKING EXAMPLE .. 26
3.1.1 RosettaNet Service Protocol Message... 26
3.1.2 RosettaNet Agent Protocol Message ... 31
3.1.3 Protocols below the Transfer Protocol ... 33

3.2 TRANSFERRING ROSETTANET OBJECTS BETWEEN WEB SERVERS... 34
3.2.1 Server-to-Server Transfer ... 34
3.2.2 Server-Browser-Server Transfer ... 34

3.3 ROSETTANET PROTOCOL STACK SPECIFICATION .. 34
3.3.1 Transaction Model .. 35
3.3.2 RosettaNet Agent Protocol .. 35
3.3.3 HTML User Agent Protocol .. 36
3.3.4 Common Gateway Interface (CGI) Agent Protocol .. 38
3.3.5 HyperText Transfer Protocols... 38
3.3.6 Secure Socket Layer (SSL) Protocols.. 41

4 Digital Signatures...42

4.1 STRUCTURE OF A ROSETTANET DIGITAL SIGNATURE ... 43
4.2 PREPARING AND VERIFYING A SIGNATURE.. 43
4.3 COMPLIANCE... 45

5 Authentication Using SSL and Digital Certificates...45

5.1 DIGITAL CERTIFICATE SPECIFICATIONS... 46
5.1.1 Certificate Content Requirements ... 46
5.1.2 Selection of a Certificate Authority ... 47
5.1.3 Certification Classes and Policies .. 48
5.1.4 Certificate Revocation Lists .. 48
5.1.5 Compliance ... 49

6 Technical Compliance..49

6.1 COMPLIANCE WITH PIP SPECIFICATIONS... 49

Copyright 1999 by RosettaNet. All rights reserved iv

6.2 COMPLIANCE WITH PROTOCOL MESSAGE SPECIFICATIONS ... 50
6.3 COMPLIANCE WITH TRANSFER-RELATED SPECIFICATIONS.. 50
6.4 COMPLIANCE WITH SECURITY-RELATED SPECIFICATIONS .. 50
6.5 TECHNICAL COMPLIANCE FOR SERVICING ORGANIZATIONS ... 51
6.6 TECHNICAL COMPLIANCE FOR INITIATING ORGANIZATIONS ... 52
6.7 TECHNICAL COMPLIANCE FOR USERS ... 52
6.8 TECHNICAL COMPLIANCE FOR THIRD PARTY AGENTS .. 52
6.9 TECHNICAL COMPLIANCE FOR TECHNOLOGY PROVIDER SOLUTIONS ... 53

7 Implementation Needs...53

7.1 ROSETTANET PROTOCOL STACK SPECIFICATION .. 53
7.2 DIGITAL SIGNATURES.. 55
7.3 AUTHENTICATION USING SSL AND DIGITAL CERTIFICATES ... 56

8 RosettaNet Protocol Message DTDs...56

9 Complete Example of a Service Protocol Message...57

Bibliography ...62

Glossary..65

FiguresFiguresFiguresFigures

Figure 1. RosettaNet e-Business Model...16

Figure 2. ISO/OSI and RosettaNet Communications Reference Models...19

Figure 3. Implementation Framework Conceptual View ...20

Figure 4. Adapting and Extending the Internet and WWW Protocols ..24

Figure 5. RosettaNet Protocol Stack..25

Figure 6. Message Packing Example for the RosettaNet Protocol Stack..25

Figure 7. Preamble Header ...27

Figure 8. Service Header Instance...28

Figure 9. Action Message Instance ..29

Figure 10. MIME-Packaged Service Protocol Message Instance ...30

Figure 11. RosettaNet Object Format...31

Figure 12. Structure of a RosettaNet Object...36

TablesTablesTablesTables

Table 1. RosettaNet Substitution of OBI Terminology.. xiv

Table 2. RosettaNet’s PIP Development Methodology ..17

Table 3. Fields within a RosettaNet Digital Signature ...43

Copyright 1999 by RosettaNet. All rights reserved v

ExamplesExamplesExamplesExamples

Example 1. Agent Protocol Message ..32

Example 2. Transfer Protocol Request Message ...33

Example 3. Transfer Protocol Response Message ..33

Example 4. Transfer Protocol Request Message (CGI Agent) ...33

Example 5. Name-Value Pair Parameter ...37

Example 6. RosettaNet Message Exchange...40

Example 7. CGI Message Exchange ..40

Example 8. HTML Message Exchange ..40

Copyright 1999 by RosettaNet. All rights reserved vii

Version HistoryVersion HistoryVersion HistoryVersion History

Version 0.1 14 Dec 1998 Initial draft for comment by Project Architects

Version 0.2 18 Dec 1998 Draft revised by Project Architects

Version 0.3 21 Dec 1998 Successive revision

Version 0.4 22 Dec 1998 Draft upgraded with new implementation content.

Version 0.5 23 Dec 1998 Successive revision

Version 0.6 5 Jan 1999 Significant revision

Version 0.7 19 Jan 1999 Final revision by Project Architects

Version 0.8 26 Jan 1999 Incorporating Project Architects final comments

Version 1.0 16 Mar 1999 Incorporating industry feedback

Version 1.01 08 July 1999 Specification Document Change

Version 1.1 08 Nov 1999 Specification Revisions:
• Incorporate Section 10 of v1.01 into body of

document as appropriate; eliminate section 10
• Complete rewrite of Section 2 and much of

Section 3 (eliminate EDI vocabulary & message
structures; add XML message header and content
structures, including Sequence Validation; add
message format; change requirement for base64
encoding)

• Alterations to digital signatures
• All PIP and protocol examples replaced/updated

using PIP 2A8.

Copyright 1999 by RosettaNet. All rights reserved ix

Executive SummaryExecutive SummaryExecutive SummaryExecutive Summary

RosettaNet’s mission is to harness the global and pervasive reach of the Internet by defining
and leading the implementation of open and common electronic business processes between
partners in the Information Technology Supply Chain. These processes are designed to align the
electronic business interfaces between partners, ultimately resulting in measurable benefits for
IT buyers and supply chain partners. RosettaNet specifies these open and common e-business
processes as Partner Interface Processes (PIPs) and their implementation guidelines.
RosettaNet distributes these guidelines to partners in the supply chain so that they can
configure their specific e-business processes to inter-operate with those of their partners.

The RosettaNet Implementation Framework project was chartered to specify an open and
common RosettaNet networked-application framework (often abbreviated as “RNIF”) so that
partners and RosettaNet solution providers can implement computer solutions that can
collaboratively execute RosettaNet-compliant PIPs. The following RosettaNet objectives drove
the creation of this specification:

• Streamline Execution: RosettaNet needs to facilitate the rapid development of PIPs.

• Accelerate Adoption: RosettaNet needs to facilitate the rapid development of e-business
applications that execute RosettaNet-compliant PIPs.

This document presents a PIP specification model and a networked application framework that
allows RosettaNet to meet these objectives. The PIP specification model enables RosettaNet to
specify partner-to-partner electronic business processes in terms of “actions,” “transactions”
and “execution processes.” The implementation framework specification enables RosettaNet
partners and solution providers to create networked applications that can execute these
electronic business processes by communicating according to strictly defined protocols. These
protocols specify application message formats and message exchange sequences. Also, this
specification includes authentication, authorization, encryption and non-repudiation
implementation aspects that are necessary for conducting secure electronic business over the
Internet.

As a result of the EConcert pilot programs and RosettaNet research efforts, there have been a
number of findings on the current state of the RosettaNet Implementation Framework (RNIF)
specifications. These findings ranged from simple clarifications that needed to be included in the
current documentation, to erroneous information that was in the documentation, to changes in
direction (such as moving from EDI vocabulary and structure and RosettaNet vocabulary and
XML-encoding of RosettaNet structures). This version of the document communicates changes
in the specifications and documentation clarifications to the participating members. [\CHG]

Copyright 1999 by RosettaNet. All rights reserved xi

PrefacePrefacePrefacePreface

Information contained in this preface addresses how this document is to be used and explains
the relationship between this specification and the Open Buying on the Internet™ (OBI)
specifications.

Purpose of the DocumentPurpose of the DocumentPurpose of the DocumentPurpose of the Document

The purpose of this document is to provide an implementation guideline for e-business system
implementers and solution providers who wish to create interoperable software application
components that cooperatively execute RosettaNet “Partner Interface Processes” (PIPs).

Intended AudienceIntended AudienceIntended AudienceIntended Audience

The primary audience for this document is software engineers. These engineers will be
developing RosettaNet-compliant networked software applications that can interoperate with
other RosettaNet-compliant networked software applications developed by other companies.
These applications will cooperatively execute and validate RosettaNet e-business PIP guidelines.

The secondary audience is system architects. This includes both architects within implementing
companies who must integrate their architectures with RosettaNet architectures and
applications, as well as those who volunteer to participate in RosettaNet projects to create
additional RosettaNet e-business specifications.

PrerequisitesPrerequisitesPrerequisitesPrerequisites

It is assumed that the audience will be familiar with or have knowledge of the following:

• OSI layers and protocols

• General Internet protocols

• Digital signatures and SSL

• XML

• All the external references listed in the Bibliography

• Working knowledge of Unified Modeling Language (UML).

Scope of the DocumentScope of the DocumentScope of the DocumentScope of the Document

This document provides sufficient business and architectural background to understand the
context for the implementation framework; specification of the RosettaNet implementation
framework is the focus of this document. Included with the framework are sections detailing
technical compliance, implementation notes, the RosettaNet action/transaction protocol
message format, and a complete example of an action/transaction protocol message.

Copyright 1999 by RosettaNet. All rights reserved xii

This document does not provide user documentation, nor a detailed architectural treatise. This
document subsumes previous versions.

Structure of This DocumentStructure of This DocumentStructure of This DocumentStructure of This Document

This document is an implementation guideline for an instance of the RosettaNet networked
application architecture. It is divided into the following sections:

1. “Introduction” provides the RosettaNet business model, introduces the concept of “Partner
Interface Process” (PIP) guidelines; and discusses the RosettaNet networked application
architecture.

2. “Partner Interface Process Specifications” provides the preamble header, service header,
and service content message format.

3. “RosettaNet Networked Application Protocols” provides an e-business application
framework that uses XML and the WWW to create interoperable software solutions that
can execute the RosettaNet service specifications.

4. “Digital Signatures” provides details on digital signatures within the scope of the RosettaNet
implementation framework.

5. “Authentication Using SSL and Digital Certificates” provides details on implementing
authentication using SSL and digital certificates.

6. “Technical Compliance” comprises technical compliance specifications that ensure
interoperability among solutions created by individual supply chain companies and individual
RosettaNet solution partners.

7. “Implementation Needs” provides details for implementing some of the technical
requirements specified in earlier sections.

8. “RosettaNet Service Protocol Message DTDs” provides a list of the non-PIP-specific
message guidelines and DTDs that are necessary for creating RosettaNet-compliant
messages. The message guidelines and DTDs themselves are contained in separate individual
files.

9. “Complete Example of an Service Protocol Message” uses PIP2A8 to illustrate the service
protocol message document instance.

Style ConventionsStyle ConventionsStyle ConventionsStyle Conventions

This specification uses a number of conventions to convey specific meanings. These fall into two
categories: typographical conventions and language conventions. They are identified here.

TypTypTypTypographical Conventionsographical Conventionsographical Conventionsographical Conventions

The use of a monospaced font indicates that a code fragment is being presented. Within the
monospaced font, the use of italics indicates that the text so presented is text to be
replaced by the user or the system, depending upon the context of the code fragment.

Copyright 1999 by RosettaNet. All rights reserved xiii

Language ConventionsLanguage ConventionsLanguage ConventionsLanguage Conventions

This specification adopts the conventions expressed in the IETF’s RFC 2119 “Key Words for
Use in RFCs to Indicate Requirement Levels.” The key words “MUST”, “MUST NOT”,
“REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”,
“MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119.

Related DocumentsRelated DocumentsRelated DocumentsRelated Documents

This specification draws heavily upon the work of the Open Buying Initiative (OBI™) and its
specifications. Other RosettaNet documents are also heavily drawn upon. Specific documents
are listed in the Bibliography at the end of this document.

AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements

Large sections of the RosettaNet Implementation Framework Specification document have been
adapted from the Open Buying on the Internet (OBI) ™ Technical Specifications (v1.1) document.
Paragraphs and sometimes entire sections were copied and modified to suit the more generic
needs of RosettaNet.

As an example, OBI's data formats and process descriptions are specific to a catalog service and
an ordering process; RosettaNet needs a description of OBI-specified processes and data
formats that are applicable to any agent software component and service software component.

To meet RosettaNet’s needs, this specification:

1. specifies the “RosettaNet Object” to accommodate upper level protocols as opposed to
OBI’s EDI-formatted messages,

2. generalizes the “catalog service” to a “business service” and a “requester” to a “user,”

3. generalizes buying and selling organizations, and

4. describes a layered conceptual model with implemented protocols

RosettaNet also references OBI’s documented specifications for:

1. the security layer,

2. the transfer layer and

3. the agent layer.

Grateful acknowledgement is made of RosettaNet’s reliance upon the previous work of the
OBI consortium, particularly in Section 3 of this RosettaNet document. The following words or
phrases were routinely substituted in the OBI content to make it suitable for RosettaNet
needs.

Copyright 1999 by RosettaNet. All rights reserved xiv

Table 1. RosettaNet Substitution of OBI Terminology
OBI RosettaNet Definition

OBI RosettaNet The RosettaNet Consortium

Buying Organization Initiating Organization An organization that initiates a RosettaNet
service request.

Selling Organization Servicing Organization An organization that services a RosettaNet
service request.

Requisitioner User A person that requests RosettaNet services
via a web browser.

Catalog Service A business service.

Copyright 1999 by RosettaNet. All rights reserved 15

1111 IntroductionIntroductionIntroductionIntroduction

RosettaNet’s mission is to harness the global and pervasive reach of the Internet by defining,
and leading the implementation of, open and common electronic business processes. These
processes are designed to align the electronic business interfaces between participating supply
chain partners, resulting in measurable benefits. Current partners include those in the
Information Technology (IT) Products supply chain and those in the Electronic Component
(EC) supply chain.

RosettaNet calls these open and common e-business processes “Partner Interface Process”
(PIP) guidelines. These PIP guidelines comprise both human-readable and machine-readable
specifications that are used to monitor the compliance of partner e-business implementations
and applications to the RosettaNet specifications. RosettaNet PIP guideline development
follows a methodology that is outlined in this section. PIP guidelines are distributed to partners
in the supply chain once they have been agreed upon.

Partner organizations in the member supply chains will use PIP guidelines to configure their
specific e-business processes with other partner organizations. An important component of
these e-business processes are the networked computer applications that collaboratively
execute e-business processes that span partner organizations in the supply chain. These
applications inter-operate by adhering to the open and common RosettaNet networked-
application architecture.

This document provides an implementation guideline for a specific networked application that is
an instance of the RosettaNet architecture. Applications built to this specification are intended
to operate in unison with the RosettaNet business model in which partner interface process
specifications are developed and distributed to partners in the participating supply chains. Part
of the business model requires applications that adhere to the RosettaNet networked
application architecture to be configured to collaboratively execute these partner interface
processes as part of their overall e-business processes.

1.11.11.11.1 RosettaNet Business ModelRosettaNet Business ModelRosettaNet Business ModelRosettaNet Business Model

Figure 1 illustrates the conceptual RosettaNet business model. The RosettaNet model is
intended to enable supply chain business partners to execute interoperable e-business
processes by continuously developing, maintaining and distributing partner interface process
implementation guidelines.

Copyright 1999 by RosettaNet. All rights reserved 16

Implementation
Guidelines

Implementation
Guidelines

Upstream
Process

Entity

Downstream
Process

Entity

Entity

Implementation Guideline Service

Broad Framework

E-Business Framework Service
(Adopt/Create)

Broad
Framework

Broad
Framework

Messages

Extended Impl. Guidelines

Figure 1. RosettaNet e-Business Model

RosettaNet adopts existing e-business standards, guidelines, or specifications wherever possible
and creates new e-business framework specifications where necessary. Typically these
frameworks are generic and all-embracing in nature so that they can be used for all types of
e-business applications. There are five conceptual parts to the RosettaNet business model:

1. RosettaNet’s Partner Interface Process (PIP) teams use these frameworks to create PIP
guidelines (labeled “1” in Figure 1) that define how computer systems will cooperatively
execute e-business processes in the supply chain. These guidelines narrow the general
information frameworks into detailed specifications that must be embraced by all members
who wish to conduct e-business with RosettaNet-compliant partners.

2. The implementation guidelines are provided to companies who wish to conduct e-business
according to the RosettaNet’s specifications (labeled “2” in Figure 1).

3. Guidelines are used to validate the information exchanged between companies (labeled “3”
in Figure 1). These guidelines can also be used to create the content that is exchanged and
to support tools used to create and manage content in each company’s internal system.

4. RosettaNet intends to allow companies to extend the implementation guideline for their
own individual needs. Companies can extend the implementation guideline according to the
broad framework (labeled “4” in Figure 1). These extensions cannot override those
specified by RosettaNet.

5. The extended implementation guidelines are then exchanged between companies (labeled
“5” in Figure 1). This then allows companies to validate these message extensions during
exchange.

A unique aspect of the RosettaNet e-business model is that all guidelines and translations will
be distributed as machine-readable documents. This will allow companies to quickly configure
their RosettaNet-compliant applications to execute and validate new or updated PIP
specifications.

Copyright 1999 by RosettaNet. All rights reserved 17

1.21.21.21.2 Partner Interface Process (PIP) Guidelines Partner Interface Process (PIP) Guidelines Partner Interface Process (PIP) Guidelines Partner Interface Process (PIP) Guidelines

RosettaNet has evolved a methodology for developing PIP guidelines as shown in Table 2.
Companies that are part of the member supply chains collaboratively develop these PIP
guidelines in three steps1. These companies and RosettaNet solution partners then implement
the guidelines as interoperable, networked software systems.

Table 2. RosettaNet’s PIP Development Methodology
Step Process Model Domain Interaction Exchange

1 "as-is" Business
Process

Organization with
Suppliers

Employee Role
Interaction/ External
Process Interaction

Business Information
in any format

2 Partner Interface
Process

Partner Roles in Supply
Chain

Partner Role
Interaction

Electronic Business
Properties

3
Networked
Application
Execution Process

Software Agents and
Services in
Communications Network

Service Interaction Messages

Three steps are necessary in order to develop a PIP guideline, as follows:

1. The first step in the methodology results in a process model that captures the current "as-
is" business processes from the perspective of an organization with suppliers. The purpose
of this model is to create an understanding of the current partner business processes, their
employee role interactions and the business information that they exchange using any
number of formats and methods, e.g., telephone, fax, e-mail, WWW.

2. The next step in the methodology uses the current business process model to create a "to-
be" business process model for partner types in the supply chain, i.e., Manufacturer,
Distributor, Retailer, Financier, Carrier and End User2. This "to-be" model comprises
partner roles and their partner interface processes. Partner interface processes show the
interaction between partner roles that are independent of any organizational configuration.
The purpose of this model is to define partner roles, e.g., Catalog Publisher, Catalog
Distributor, Order Manager, Requisition Manager, and the structured properties that they
exchange when they interact. The defined properties are captured in two property
databases — a technical specification property database and a business property database.

3. The e-business process model between partner roles is then used as functional
requirements for a networked application execution process model, called a “PIP
Blueprint.” This model specifies how software agents and services execute partner interface
processes in a collaborative networked computer system. Agent and service software
components exchange messages in transactions that are in turn sequenced by execution
processes. Transactions are units of work where each party in the interaction is either able

1 There is an additional part to a PIP guideline that provides metrics comparing a partner type's current business process to
future e-business process based on RosettaNet specifications, which is not included here. Refer to the RosettaNet white paper
entitled Partner Interface Process Technical Architecture.
2 Note that an end user is an organization such as the government. This is not the same entity as an individual consumer.

Copyright 1999 by RosettaNet. All rights reserved 18

to commit that the work was performed or must rollback to a state before the transaction
was initiated. Execution processes comprise conditional processing that is able to
choreograph transactions based on their reported success or failure.

4. Finally, the PIP “blueprints” are used to create a PIP specification, which includes specific
business message guidelines to carry out the business processes contained in the PIP and
corresponding DTDs for each message guideline.

Networked applications that implement RosettaNet partner interface processes are required
to comply with three specifications that result from the final step in the PIP development
methodology. These specifications are:

1. Action specifications. These specifications comprise the business action messages that are
exchanged in a sequence by software agent and service components.

2. Transaction specifications. These specifications comprise the sequence of message exchanges
that comprise a unit of work. I.e., all parties agree to commit to do the work or they all roll
back to a state before the transaction was initiated.

3. Process specifications. These execution process specifications conditionally choreograph
transactions required for executing a partner interface process.

Supply chain companies and RosettaNet solution partners that wish to create open,
interoperable, networked applications need to adhere to these specifications, which are
distributed in both human-readable and machine-readable forms. However, the machine-
readable versions (i.e., XML DTDs) are not complete specifications, due to the limitations of
DTDs themselves. Hence the complete specifications only exist in the human-readable PIP
specification and accompanying message guidelines (HTML format). In the future, these
specifications will be increasingly machine-readable, allowing RosettaNet member companies to
create solutions that can be rapidly configured to changing supply chain business models.

1.31.31.31.3 RosettaNet Networked Application ArchitectureRosettaNet Networked Application ArchitectureRosettaNet Networked Application ArchitectureRosettaNet Networked Application Architecture

RosettaNet's networked application architecture takes as its starting point the International
Standards Organization (ISO) Open Systems Interconnect (OSI) reference model shown in
Figure 2. The ISO/OSI model defines seven layers: data link, logical link, network, transport,
session, presentation and application. These layers can be categorized as providing either
transport functionality or application functionality.

The RosettaNet e-business communications model specifically defines the behavior that should
occur within the OSI application and session layers. The RosettaNet model divides the OSI
application layer into the following sub-layers:

1. Action Layer. This layer provides business actions that act either on or with accompanying
information.

2. Transaction Layer. This layer provides transaction monitoring for sequences of message
exchanges that perform a unit of work. Either all parties to the transaction commit to the
unit of work of they all roll back to a previous state before the transaction was started.

3. Process Layer. This layer encapsulates conditional choreography of transactions for executing
a partner interface process.

Copyright 1999 by RosettaNet. All rights reserved 19

4. Service Layer. This layer provides network resources that perform network and business
related functions.

5. Agent Layer. This layer provides communication interfaces for user and machine agents.

6. Message Handling Layer. This layer provides reliable, asynchronous and scaleable information
delivery.

7. Transfer Layer. This layer provides information transfer between uniquely named network
resources.

8. Security Layer. This layer provides a secure communications channel (connection) that,
together with digital signatures, can be used to implement authorization and authentication.

OSI Layers
Ubiquitous Communications

Reference Model

Tr
an

sp
or

t
A

pp
lic

at
io

n

RosettaNet Layers
e-Business Communications

Reference Model

Security Layer

Network Layer

Data Link Layer

Physical Layer

Application Layer

Presentation Layer

Session Layer

Transport Layer

Transaction Layer

Transfer Layer

Message Handling Layer

Agent Layer

Service Layer

Process Layer

Action Layer

Figure 2. ISO/OSI and RosettaNet Communications Reference Models

The RosettaNet e-business model is a conceptual model. Figure 3 shows the "blueprint"
architecture for specifying one or more protocols at each layer of the model to enable
RosettaNet networked applications to execute and validate PIP specifications.

Copyright 1999 by RosettaNet. All rights reserved 20

E-Business Processes

Protocol Stack
Messages

Protocol Stack

Transaction Protocols

Action Message

Transaction Header

Service Message

Action Protocols

Service Protocols

Message Handling
Protocols

Transfer Protocols

Security Protocols

Transport Protocols

Action Message

Transaction Header

Service Message

Transaction Protocols

Action Protocols

Service Protocols

Message Handling
Protocols

Transfer Protocols

Security Protocols

Transport Protocols

Agent Protocols Agent Protocols

Process Protocols Process Protocols Process HeaderProcess Header

Figure 3. Implementation Framework Conceptual View

The shaded components and the dashed line in Figure 3 are of great significance. RosettaNet is
an industry consortium and is primarily in the business of creating PIP guidelines with which
their partner organization members agree to conduct e-business. This is shown in the shaded
areas. It is expected that RosettaNet and members of the industry will implement these
guidelines in a manner that is compatible with their existing information systems and their
future information system plans. It is also expected that industry members will build application
systems that can accommodate both RosettaNet guidelines and other existing industry
guidelines that are used in commercial applications that are outside RosettaNet’s scope. The
intent of the protocol stack inside the dashed box is to provide an implementation framework
for these two benefits to be realized.

2222 Partner Interface Process (PIP) SpecificationsPartner Interface Process (PIP) SpecificationsPartner Interface Process (PIP) SpecificationsPartner Interface Process (PIP) Specifications

Fundamental to PIPs is the exchange of business data between partners in a supply chain.
RosettaNet-compliant, networked applications receive data in a standard format that they can
easily process for their respective line of business functions and applications.

Currently, RosettaNet PIP teams create RosettaNet messages using the set of elements and
codes defined in the Rosetta business and technical dictionaries. This set is used as a baseline
from which PIP teams create specific message exchange specifications. PIP teams precisely
define the values and codes that can be assigned to each of the data elements. This specification
set is known as a PIP implementation guideline.

Copyright 1999 by RosettaNet. All rights reserved 21

These guidelines are sent from RosettaNet to supply chain partners and RosettaNet solution
partners in a human readable printed form, as well as in machine-readable form. The guidelines
define the vocabulary, structure and allowable data element values and value types, for each
message exchanged during the execution of a PIP. RosettaNet-compliant networked
applications must author and read these messages according to the RosettaNet message
guideline. These guidelines can additionally be used for validating the messages received in PIP
interchanges by translation systems.

PIP specifications enable the development of interoperatable applications. There are three parts
to a PIP business message guideline: the Preamble Header, the Service Header, and Service
Content. These are all packaged for transport as MIME messages. Each of these are described
below.

2.12.12.12.1 PIP Business Message StructurePIP Business Message StructurePIP Business Message StructurePIP Business Message Structure

RosettaNet business messages consist of a message header and a message body. Both the
header and the body are complete, valid XML documents. The header and the body are
encoded within a multipart/Related MIME message. This section outlines the use of MIME and
specifically the "Multipart/Related" content-type to pack different pieces of a RosettaNet
business message.

The RosettaNet business message is transported as a MIME message with XML body-parts, as
specified below:

MIME-Version: 1.0
 Content-Type: Multipart/Related; boundary="RN-part-boundary";
 type="Application/x-RosettaNet"
 Content-Description: This is the RosettaNet business message

 --RN-part-boundary
 Content-Type: Application/XML; RNSubType="preamble-header"
 Content-Description: This is the Preamble Header part of the business message

 [The PREAMBLE HEADER goes here]

 --RN-part-boundary
 Content-Type: Application/XML; RNSubType="service-header"
 Content-Description: This is the Service Header part of the business message

 [The SERVICE HEADER goes here]

 --RN-part-boundary
 Content-Type: Application/XML; RNSubType="service-content"
 Content-Description: This is the Service Content part of the business message

 [The SERVICE CONTENT goes here]

 --RN-part-boundary--

See section 9 for a sample document.

2.1.12.1.12.1.12.1.1 Message PreambleMessage PreambleMessage PreambleMessage Preamble

The preamble section of the MIME message contains elements that are global to the
RosettaNet service and those that are common to the Service Header and Service Content

Copyright 1999 by RosettaNet. All rights reserved 22

(see below). It is specified with a DTD that is common across all messages. See the Preamble
Guideline and the Preamble DTD for complete documentation.

2.1.22.1.22.1.22.1.2 Message Header Message Header Message Header Message Header

The message header is specified with a DTD that is common across all messages. A separate
DTD and/or XML schema for each message will validate the body of the messages. While a
single DTD is required to validate all message headers, we expect each message to have its own
DTD and/or XML schema.

The rationale behind a common message header DTD that is separate from the message
content DTD is primarily because it supports a logical segmentation of validation steps.
RosettaNet specifies that incoming messages go through the following validation steps:

• Grammar Validation

• Sequence Validation

• Schema Validation

• Content Validation

Grammar and sequence validations are performed against the message header DTD. Validation
of the message content is deferred until the schema validation step. Note that the message
header may be valid against its DTD, even though the message content may contain errors. The
ability to parse the header in such cases separate from the body allows the recipient to retrieve
information about the sending party in order to send a failure message.

2.1.32.1.32.1.32.1.3 Message ContentMessage ContentMessage ContentMessage Content

Message content is specified in individual PIPs. Each PIP has one or more “actions” that are
described by means of individual DTDs or schema.

2.22.22.22.2 RosettaNet Message Guideline FormatRosettaNet Message Guideline FormatRosettaNet Message Guideline FormatRosettaNet Message Guideline Format

Specification of message guidelines is in human-readable form, using RTF and HTML formats.
Additionally, message guidelines are provided in machine-readable formats. The preferred
format is XML DTDs. (As various XML schema languages mature and members express the
business message guidelines in them (as well as in DTDs). It is expected that W3C’s XML
Schema (when available) will be among the first.) Message vocabulary comes from RosettaNet
dictionaries; each message guideline has its own DTD or schema.

While these DTDs will allow partners to determine if a message structure is valid, they will not
allow partners to determine if a message is valid with respect to a message guideline for a
business document (captured in the RosettaNet business document UML model). The reason is
that neither DTDs nor XML schema languages are as rich as the UML and OCL (Object
Constraint Language) that RosettaNet uses to describe business documents designed during PIP
analysis sessions. (Note therefore that the only complete specification of a message guideline is
in the human-readable RTF and HTML formats.)

Copyright 1999 by RosettaNet. All rights reserved 23

DTDs are well understood and there are plenty of parsing tools available to validate the
message structures. However, DTDs alone are not sufficient to validate a message at a higher
level, such as semantics that may include constraints (absence, presence, etc.) on the elements
of a message structure. Unfortunately, there are no mature and open mechanisms for specifying
these constraints with commerical off-the-shelf (COTS) tools available today. (Note that
schema validation tools will be able to validate more of the message than DTD validation tools.)

Supply chain partners should review their trading partner agreements in this respect. The
UN/EDIFACT and American Legal Association recommend that partners agree on the point at
which a message is legally considered "received" i.e. the point at which you could send back an
acknowledgement of receipt. Such agreement must take into account what partners can do
with tools and must be human-validated at this point. RosettaNet is separately working on
recommendations for member Trading Partner Agreements.

3333 RosettaNet Networked Application ProtocolsRosettaNet Networked Application ProtocolsRosettaNet Networked Application ProtocolsRosettaNet Networked Application Protocols

Figure 4 shows how the Internet and the WWW implement the ISO/OSI layers. The TCP/IP
protocol provides the functionality defined for the OSI network and transport layers. Sockets
(not shown) and the Secure Sockets Layer (SSL) are OSI session layer protocols. Note that
SSL actually comprises a number of sub-layers and protocols but this detail in not shown in the
diagram. Figure 4 also shows the two HTTP protocols that operate on top of TCP/IP. With
HTTPS, SSL is utilized, and with HTTP, SSL is not utilized.

The relationship of the RosettaNet e-Business application model (as presented in this
document) to the OSI layers is also shown in Figure 4. The RosettaNet model specifies that
either HTTP or HTTPS (HTTP over SSL) can be used for the transfer and security layers.

The OSI presentation layer is not shown, as neither Internet applications nor RosettaNet
networked applications use any protocols from that layer.

Copyright 1999 by RosettaNet. All rights reserved 24

OSI Layered
Ubiquitous Communications

Reference Model

Internet and WWW
Protocol Stack

 RosettaNet Layers
e-Business Communications

Reference Model

Network Layer
Data Link Layer
Physical Layer

Application Layer
Session Layer
Transport Layer

HTTPS
SSL

TCP/IP

HTTP

Process Layer

Transfer Layer
Agent Layer
Service Layer

Security Layer

Action Layer
Transaction Layer

Figure 4. Adapting and Extending the Internet and WWW Protocols

Figure 5 shows the protocols that comprise the RosettaNet implementation framework.

Note that RosettaNet has combined the Service, Process, Transaction, and Action layers from
the Implementation Framework conceptual view (Figure 2) into a single Service message for the
purposes of the current implementation framework. For agent, service, process, transaction
and action layers, the RosettaNet model makes use of several protocols defined by official
standards bodies and industry consortiums and organizations.

The agent layer comprises a service-agent protocol, a user-agent protocol and a CGI (Common
Gateway Interface) protocol. The RosettaNet Service protocol, with an XML interchange
format, is specified for the service, process, transaction and action layers.

Copyright 1999 by RosettaNet. All rights reserved 25

RosettaNet
Protocol Stack

RosettaNet Layers
e-Business Communications

Reference Model

RosettaNet
Service Message

Preamble
Service Header
 Process Header
 Transaction Header
 Action Header
Service Content
 Action Content

Process Layer

Transfer Layer

Agent Layer

Service Layer

Security Layer

Action Layer

Transaction Layer RosettaNet
Service
Protocol

HTTPS

RosettaNet
Agent Protocol

SSL

HTML User
Agent Protocol

HTTP

CGI
Agent Protocol

Figure 5. RosettaNet Protocol Stack

A message may comprise a header, content and a trailer as shown in Figure 6. The content may
be a message from an upper protocol or it may be application information. Note that there is
no trailer for the service protocol message.

Example
(using HTTPS with SSL

and non-CGI Agent)

RosettaNet e-Business
Protocol Stack

Implementation Model

HTTPS

SSL V3

HTML
Form

Service Protocol

RosettaNet Agent Protocol

HTTP

CGI
HTML

Message

Header Content

Message Packing

Header Content Trailer

Header Content Trailer

Header Content Trailer
Ver|Len Len|Signature

NAME=ERNO VALUE=“ ”

POST|length|
type|encoding

Preamble
Header

Service
Header

Service
Content

…|type|length ...

Figure 6. Message Packing Example for the RosettaNet Protocol Stack

The action message is encapsulated into a service message. This message is in turn encapsulated
within a header and trailer specified by the agent protocol. The agent protocol facilitates
communication between applications that support the RosettaNet agent protocol.

Copyright 1999 by RosettaNet. All rights reserved 26

The resulting RosettaNet “object” can then be directly encapsulated into an HTTP message,
into an HTML form, or into a CGI name-value pair. Example 1 shows the RosettaNet Object
being encapsulated into an HTML form and the form itself being encapsulated in an HTTP
message. From HTTP downwards, the messages are handled by the lower layers like any other
messages. The process continues down the stack until the physical layer where it is sent over a
communications medium for unpacking by a receiving computing system.

3.13.13.13.1 MessageMessageMessageMessage----Packing ExamplePacking ExamplePacking ExamplePacking Example

The “Distribute Stock Keeping Unit Creation Notification” RosettaNet message in PIP 2A8:
Distribute Product Stock Keeping Unit that is sent from a “Buyer” to a “Customer Manger” is used
in the following message-packing example.

In this example, the message exchange is between two RosettaNet services, namely, the
“Buyer Service” and the “Customer Manager Service”. This is a service-to-service exchange and
in this case, the RosettaNet Object is directly encapsulated by the HTTP protocol at the
transport level. In general, agents can also act on behalf of users (as in the case of a web
browser). When agents act on behalf of users, the RosettaNet Object is encapsulated into an
HTML form as a CGI name-value pair, which in turn is exchanged via the HTTP protocol.

Note that the example ends at the HTTP protocol but in a working implementation the
message is encapsulated in a TCP message that is in turn encapsulated in an IP message and so
on down the protocol stack.

The following sections describe the various parts of the business message. Referring to the
example given in this section will assist in understanding the below explanations.

3.1.13.1.13.1.13.1.1 RosettaNet Service Protocol MessageRosettaNet Service Protocol MessageRosettaNet Service Protocol MessageRosettaNet Service Protocol Message

The RosettaNet Service protocol message is the business message that is exchanged between
two RosettaNet entities (Services and/or Agents). As described earlier, the service protocol
message comprises a “Preamble”, “Service Header” and the “Service Content” that are
packaged into a MIME multipart/related content-type.

The Preamble, Service Header and the Service Content are all XML documents which need to
be validated against their RosettaNet-provided DTDs. The Preamble and the Service Header
have DTDs that are common to all RosettaNet Service Messages and are defined and explained
by RosettaNet’s Preamble Part Message Guideline and Service Header Part Message Guideline
respectively. The Service Header itself comprises elements for the Process Header, Transaction
Header and the Action Header. The Service Content varies based on the actual business
message being exchanged (as defined in individual PIPs) with each business message that can be
a Service Content defined by a RosettaNet guideline of its own.

Below we look at each of the above components in some detail and how they are packaged
together into a Service Message.

Copyright 1999 by RosettaNet. All rights reserved 27

3.1.1.1 Preamble

The Preamble is the first component of the service message and contains elements that are
global to the RosettaNet service and the elements that are common to the Service Header and
the Service Content.

In Figure 7, an example instance of the preamble is shown. All elements of the preamble and
example values for the elements are shown. Note that the actual element tag names are
correct as of this writing; however, the actual Preamble Part Message Guideline published by
RosettaNet should be consulted for the correct tag names for the elements, the set of valid
values, the data-type and other semantics of the element values etc. This also applies to all
other components of the service message (i.e. Service Header and Service Content).

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Preamble System "PreamblePartMessageGuideline.dtd">

<Preamble>

 <VersionIdentifier>1.1</VersionIdentifier>
 <DateTimeStamp>19990531T132000.0500Z</DateTimeStamp>
 <GlobalAdministeringAuthorityCode>RosettaNet</GlobalAdministeringAuthorityCode>
 <GlobalUsageCode>Test</GlobalUsageCode>

</Preamble>

Figure 7. Preamble Header

3.1.1.2 Service Header

In Figure 8, an example instance of the service header is shown. Not all elements and their
specific values are shown for conciseness. Refer to the service header guideline published by
RosettaNet for the correct tag names for the elements, the set of valid values, the data-type
and other semantics of the element values etc.

As shown in the diagram the service header contains sub-elements for the Service Route,
Process, Transaction and Action Header parts. The Service Route identifies the sender and
recipient services of the business message. Process header contains elements that identify the
RosettaNet process, version, global process code, process instance identifier etc. The
Transaction Header contains information relating to the RosettaNet Transaction like gobal
transaction code, transaction instance identifier etc. The Action Header contains information
relating to the RosettaNet Business Action message that forms the Content of the Service
Message. This information includes the Global Business Action Identifier, version, instance
identifier, sending and receiving partner global business identifier etc.

Copyright 1999 by RosettaNet. All rights reserved

<?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE ServiceHeader SYSTEM "ServiceHeaderPartMessageGuideline.dtd">
 <ServiceHeader>
 <ServiceRoute>
 <toService>
 <BusinessServiceDescription>
 <GlobalBusinessServiceCode>
 Customer Manager Service
 </GlobalBusinessServiceCode>
 </BusinessServiceDescription>
 </toService>
 <fromService>
 <BusinessServiceDescription>
 <GlobalBusinessServiceCode>
 Buyer Service
 </GlobalBusinessServiceCode>
 </BusinessServiceDescription>
 </fromService>
 </ServiceRoute>

 <ProcessControl>
 <ProcessIdentity>
 <GlobalProcessCode>
 Distribute Product Stock Keeping Unit
 <GlobalProcessCode>
 <VersionIdentifier>1.0</VersionIdentifier>
 <GlobalProcessIndicatorCode>2A8</GlobalProcessIndicatorCode>
 <initiatingPartner>
 <GlobalBusinessIdentifier>123456789</GlobalBusinessIdentifier>
 </initiatingPartner>
 <instanceIdentifier>abc123..</instanceIdentifier>
 <description> .. </description>
 </ProcessIdentity>

 <TransactionControl>
 <GlobalTxnCommandCode>Send</GlobalTxnCommandCode>
 <AttemptCount>1</AttemptCount>
 <TransactionIdentity>
 <GlobalTxnCode>Distribute Stock Keeping Unit<GlobalTxnCode>
 <instanceIdentifier>123def..</instanceIdentifier>
 <description>..</description>
 </TransactionIdentity>
 <PartnerRoleRoute>
 <fromRole>..</fromRole>
 <toRole>..<toRole>
 </PartnerRoleRoute>

 <ActionControl>
 <ActionIdentity>
 <GlobalBusinesActionCode>
 Stock Keeping Unit Creation Notification
 </GlobalBusinesActionCode>
 <VersionIdentifier>1.0</VersionIdentifier>
 <instanceIdentifier>12xy345</instanceIdentifier>

 </ActionIdentity>
 <GlobalDocumentFunctionCode>Request</GlobalDocumentFunctionCode>
 <PartnerRoute>
 <fromPartner> .. </fromPartner>
 <toPartner> .. </toPartner>
 </PartnerRoute>
 </ActionControl>
 </TransactionControl>
 </ProcessControl>

Figure 8. Service Header Instance

3.1.1.3 Service Content

As described earlier, the service content is the RosettaNet Business
fundamental business message that is exchanged within in a transactio
Business Process and is specified in corresponding PIPs.

Service
Route
Control

Process
Header

Service
Header

Transaction
Header

Action
Header
28

Action message. This is the
n of a RosettaNet

Copyright 1999 by RosettaNet. All rights reserved 29

In Figure 9, an example instance of the service header is shown. Again, not all elements and
their specific values are shown for conciseness. For the specific business message of interest,
refer to the relevant individual action message guideline published by RosettaNet for the
correct element names, the set of valid values, the data-type and other semantics of the
element values etc. The action message used in this figure is for the “Stock Keeping Unit
Creation Notification” business action.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Pip2A8ProductNotification SYSTEM "PIP2A8SKUCreationNotificationGuideline.dtd">
<PIP2A8SKUCreationNotification>
<ProductNotice>
 <theNotice><FreeFormText>Produt SKU created.</FreeFormText></theNotice>
 <GlobalProductIdentifier>00123456789012</GlobalProductIdentifier>
</ProductNotice>
<fromRole>
 <PartnerRoleDescription>
 <GlobalPartnerRoleClassificationCode>Buyer</GlobalPartnerRoleClassificationCode>
 <PartnerDescription>
 <GlobalPartnerClassificationCode>Distributor</GlobalPartnerClassificationCode>
 <BusinessDescription>
 <GlobalBusinessIdentifier>123456789</GlobalBusinessIdentifier>
 ...
 </BusinessDescription>
 </PartnerDescription>
 <ContactInformation>
 <contactName><FreeFormText>A. Name</FreeFormText></contactName>
 <telephoneNumber><CommunicationsNumber>299.688.8998</CommunicationsNumber></telephoneNumber>
 <EmailAddress>email@mail.com</EmailAddress
 </ContactInformation>
 </PartnerRoleDescription>
</fromRole>
<toRole>
 <PartnerRoleDescription>
 <GlobalPartnerRoleClassificationCode>Customer Manager</GlobalPartnerRoleClassificationCode>
 <PartnerDescription>
 <GlobalPartnerClassificationCode>Manufacturer</GlobalPartnerClassificationCode>
 <BusinessDescription>
 <GlobalBusinessIdentifier>987654321</GlobalBusinessIdentifier>
 ...
 </BusinessDescription>
 </PartnerDescription>
 <ContactInformation>
 <contactName><FreeFormText>B. Name</FreeFormText></contactName>
 <telephoneNumber><CommunicationsNumber>188.688.8998</CommunicationsNumber></telephoneNumber>
 <EmailAddress>abc@xyz.com</EmailAddress
 </ContactInformation>
 </PartnerRoleDescription>
</toRole>
<thisDocumentGenerationDateTime>
 <DateTimeStamp>19990530T132000.0500Z</DateTimeStamp>
</thisDocumentGenerationDateTime>
<thisDocumentIdentifier>
 <ProprietaryDocumentIdentifier>DOC-001</ProprietaryDocumentIdentifier>
</thisDocumentIdentifier>
</PIP2A8SKUCreationNotification>

Figure 9. Action Message Instance

The Preamble, Service Header and Service Content are packaged into MIME multipart/related
Service Message.

In Figure 10, an example MIME-packaged service message is shown with the respective XML
parts for preamble, service header and content. The process, transaction and action header
sub-elements of the service header are also shown. However, not all elements and their specific

Copyright 1999 by RosettaNet. All rights reserved 30

values have been shown for conciseness. A complete example of a Service Protocol Message is
shown in section 9 of this document.

MIME-Version: 1.0
 Content-Type: Multipart/Related; boundary="RN-part-boundary";
 type="Application/x-RosettaNet"
 --RN-part-boundary
 Content-Type: Application/XML; RNSubType="preamble-header"

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE Preamble SYSTEM "PreamblePartMessageGuideline.dtd">
 <Preamble>

 </Preamble>
--RN-part-boundary
 Content-Type: Application/XML; RNSubType="service-header"
 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE ServiceHeader SYSTEM "ServiceHeaderPartMessageGuideline.dtd">
 <ServiceHeader>
 <ServiceRoute>
 <toService> .. </toService>
 <fromService> .. </fromService>

 </ServiceRoute>

 <ProcessControl>
 <ProcessIdentity>
 <GlobalProcessCode>...<GlobalProcessCode>
 <instanceIdentifier> .. </instanceIdentifier>

 </ProcessIdentity>

 <TransactionControl>
 <GlobalTxnCommandCode>Send</GlobalTxnCommandCode>
 <TransactionIdentity>
 <GlobalTxnCode>...<GlobalTxnCode>
 <instanceIdentifier>..</instanceIdentifier>

 </TransactionIdentity>

 <ActionControl>
 <ActionIdentity>
 <GlobalActionCode>..<GlobalActionCode>
 <instanceIdentifier> .. </instanceIdentifier>

 </ActionIdentity>

 </ActionControl>
 </TransactionControl>
 </ProcessControl>
--RN-part-boundary
 Content-Type: Application/XML; RNSubType="service-content"
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Pip2A8ProductNotification SYSTEM "PIP2A8SKUCreationNotificationGuideline.dtd">
<PIP2A8SKUCreationNotification>
<ProductNotice>
 <theNotice><FreeFormText>Produt SKU created.</FreeFormText></theNotice>
 <GlobalProductIdentifier>00123456789012</GlobalProductIdentifier>
</ProductNotice>

</PIP2A8SKUCreationNotification>
--RN-part-boundary--

Figure 10. MIME-Packaged Service Protocol Message Instance

Preamble
Header

Process
Header

Transaction
Header

Action
Header

Service
Header

Action
Message

Copyright 1999 by RosettaNet. All rights reserved 31

3.1.23.1.23.1.23.1.2 RosettaNet Agent Protocol Message RosettaNet Agent Protocol Message RosettaNet Agent Protocol Message RosettaNet Agent Protocol Message

The service protocol message is encapsulated into a RosettaNet agent protocol message
(object transferred at the Agent Layer) termed the “RosettaNet Object.” Note that the
structure of this object is equivalent to that specified in the OBI Technical Specification, v.1.1.

The RosettaNet Object is composed of a version and content length header, content
comprising a message from an upper protocol, and a digital signature length followed by a digital
signature trailer. Figure 11 shows an example of the RosettaNet agent protocol message that
encapsulates the service protocol message.

The RN version field is four bytes (big endian format) in length, with an implicit period after
two bytes. To represent version 1.10, this field in hexadecimal format would be 0x00010100.
Software reading these four bytes buffer would split it into two numbers, each of size two
bytes, and interpret them as major and minor versions.

0x00010100 RN Version (1.1)
5687 Content Length
MIME-Version: 1.0
Content-Type: Multipart/Related; boundary="RN-part-boundary";
 type="Application/x-RosettaNet"

Content-Description: RosettaNet business message

--RN-part-boundary
Content-Type: Application/XML; RNSubType="preamble-header"
Content-Description: Preamble of business message

 [Preamble goes here]

--RN-part-boundary
Content-Type: Application/XML; RNSubType="service-header"
Content-Description: Service headr of business message

 [Service Header goes here]

--RN-part-boundary
Content-Type: Application/XML; RNSubType="service-content"
Content-Description: Service content of business message

 [Service Content goes here]

--RN-part-boundary--

RosettaNet
Service Message

64 Signature Length
A#J128JHFDLKJSHD8J87654 Digital Signature

Figure 11. RosettaNet Object Format

The message packing technique used for this message follows that typically used for
communications protocol messages. All message parts are arranged in a sequential manner and
the size of fixed fields precedes variable length fields.

3.1.2.1 HTML User Agent Protocol Message

This section outlines a user agent protocol for communications with applications such as web
browsers. It is included for completeness although it is not part of the previous example
showing message exchange between RosettaNet services. This message protocol facilitates
transmission of upper protocol messages (RosettaNet Objects) from services to a user agent

Copyright 1999 by RosettaNet. All rights reserved 32

such as a web browser. The vocabulary, structure and interchange format for this protocol's
message is taken from that specified for an HTML form. RosettaNet Objects are encapsulated
into the value field for a hidden input element in an HTML form. Before the object is actually
placed into the value field for the VALUE attribute it is encoded in base64. This method of
encapsulation is shown as follows:

<INPUT TYPE=HIDDEN NAME=ERNO VALUE=″the_base64_encoded_RosettaNet_Object">
This user agent protocol message is packed as an HTML document comprising a “Form.”
Example 1 is markup showing an HTML document instance that can be used for message
packing.

Example 1. Agent Protocol Message

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
 <HEAD>
<TITLE>Subscription Request</TITLE>
 </HEAD>
 <BODY>
 <FORM METHOD=POST ACTION="http://www.example.com/rn-agent/submit" >
 <INPUT TYPE=HIDDEN NAME=ERNO
 VALUE="the_base64_encoded_RosettNet_Object">
 <INPUT TYPE=SUBMIT NAME="Submit">
 </FORM>
 </BODY>
</HTML>

3.1.2.2 Common Gateway Interface Agent Protocol Message

This section is included for- completeness, although it is not part of this particular example
showing message exchange between RosettaNet services. In addition to its agent protocol,
RosettaNet specifies an alternate message exchange protocol based on Common Gateway
Interface (CGI), enabling interactions for message exchange among applications that do not
support the RosettaNet agent protocol. This message protocol facilitates transmission of upper
protocol messages from applications such as web browsers to RosettaNet services. The
vocabulary, structure and interchange format for this protocol's message is taken from that
specified for the CGI standard. RosettaNet Objects are encapsulated into the value field for a
name-value pair. This method of encapsulation is shown in the following example.
ERNO=RosettaNet_Object

3.1.2.3 Transfer Protocol Message

The transport protocol message encapsulates all the agent protocol messages. The format of
this message is that of HTTP version 1.0 or higher. Refer to the HTTP documentation (listed in
the Bibliography) for more information on the format of HTTP request and response messages.

The following example shows the transfer-protocol request message for exchanging an
encapsulated RosettaNet agent protocol message.

Copyright 1999 by RosettaNet. All rights reserved 33

Example 2. Transfer Protocol Request Message

POST https://www.example.com/rn-agent/submit HTTP/1.0
Content-length: 3492
Content-type: application/x-rosettanet-agent; version=1.0

RosettaNet_Object

Example 3 shows the transfer-protocol response message for exchanging an encapsulated
HTML user agent protocol message.

Example 3. Transfer Protocol Response Message

HTTP/1.0 OK 200
Content-length: 3492
Content-type: text/html

<HTML>
 <HEAD>
 <TITLE>Subscription Request</TITLE>
 </HEAD>
 <BODY>
 <FORM METHOD=POST ACTION="http://www.example.com/rn-agent/submit" >
 <INPUT TYPE=HIDDEN NAME=ERNO
 VALUE="the_base64_encoded_RosettaNet_Object">
 <INPUT TYPE=SUBMIT NAME="Submit">
 </FORM>
 </BODY>
</HTML>

Example 4 shows the transfer-protocol request message for exchanging an encapsulated CGI
agent protocol message.

Example 4. Transfer Protocol Request Message (CGI Agent)

POST https://www.example.com/rn-agent/submit HTTP/1.0
Content-length: 3492
Content-type: application/x-www-form-urlencoded

ERNO=RosettaNet_Object

Refer to the HTTP specification for the message packing method used for this protocol.

3.1.33.1.33.1.33.1.3 ProtocProtocProtocProtocols below the Transfer Protocolols below the Transfer Protocolols below the Transfer Protocolols below the Transfer Protocol

If the transfer protocol message exchange requires security features such as encryption,
authentication or authorization then the message is encapsulated into the message protocols
provided by the Secure Sockets Layer (SSL) protocol. Either the transfer protocol message or
the SSL protocol message is then encapsulated in a TCP message. This process of message
encapsulation and message packing continues all the way down the protocol stack until finally
the message is sent over a communications medium to another computing system. Refer to the
respective standards for additional information.

Copyright 1999 by RosettaNet. All rights reserved 34

3.23.23.23.2 Transferring RosettaNet Objects between Web Transferring RosettaNet Objects between Web Transferring RosettaNet Objects between Web Transferring RosettaNet Objects between Web
ServersServersServersServers

The networked application specified in this document is built on the web protocols and thus
exchange information with each other using web servers. There are two methods for
transferring RosettaNet Objects between web servers: a) the server-to-server method for
directly exchanging information between two web servers, and b) the server-browser-server
method for indirectly exchanging information between web servers via a web browser.

3.2.13.2.13.2.13.2.1 ServerServerServerServer----totototo----Server TransferServer TransferServer TransferServer Transfer

The message-packing example in the previous section showed how a RosettaNet Object
message is fabricated for transfer by the transfer protocols. An application that transfers this
RosettaNet Object to a remote web server via a local web server requests the HTTP protocol
to transfer the object as content using the HTTP/1.0 POST request to a target URL. The
recipient receives the HTTP request and immediately checks the HTTP headers. If the
content-type or transfer encoding is improper, or if the content length fails to match the actual
length of the entity body, the recipient returns a 400 (BAD REQUEST) response. If the request
is accepted for processing by upper layers in the protocol, a 200 (OK) response will be
returned immediately as an acknowledgement of message receipt.

If a sender does not receive a response to the request, then the application must retry the
POST method until a response is returned. A receiver application must handle duplicate
messages. The method of handling duplicates is not specified.

3.2.23.2.23.2.23.2.2 ServerServerServerServer----BrowserBrowserBrowserBrowser----Server TransferServer TransferServer TransferServer Transfer

An application can also transfer a RosettaNet Object to a remote web server via a local web
server and a web browser. In this case the application requests the HTML User Agent Protocol
to first wrap the object as the value for a "VALUE" attribute in a hidden field that is part of an
HTML form, before transfer by HTTP as in the server-to-server transfer method. The web
browser then forwards the RosettaNet Object by requesting the CGI Agent Protocol to first
wrap the object as the value of a name-value pair, before transfer by HTTP as in the server-to-
server transfer method.

3.33.33.33.3 RosettaNet Protocol Stack SpecificaRosettaNet Protocol Stack SpecificaRosettaNet Protocol Stack SpecificaRosettaNet Protocol Stack Specificationtiontiontion

This RosettaNet implementation framework guideline comprises the following protocol stack
that is built on top of the TCP/IP protocol layer. RosettaNet does not need to specify TCP/IP,
as the lowest level protocol services used by RosettaNet applications is HTTP and HTTP over
SSL.

1. RosettaNet Upper Layer Protocols. This includes, action, transaction, process and
service protocols. The action protocol comprises rules and conventions that govern the
exchange of messages that comprise business actions that are part of a larger business
process executing in a distributed e-business computing environment. The transaction
protocol comprises rules and conventions that govern the exchange of request and

Copyright 1999 by RosettaNet. All rights reserved 35

response messages that comprise a sequential, time-dependant commitment to perform
units of work characterized by ACID properties.

2. Agent Protocols

a. RosettaNet Agent Protocol. This protocol comprises rules and conventions that
govern the exchange of request and response messages between RosettaNet services.

b. HTML User Agent Protocol. This protocol comprises rules and conventions that
govern the exchange of response messages from RosettaNet services to HTML user
agents such as web browsers.

c. CGI Agent Protocol. This protocol comprises rules and conventions that govern the
exchange of messages from applications that request services via a common gateway
interface to RosettaNet services.

3. The HyperText Transfer Protocol. The HTTP protocol comprises rules and
conventions that govern the exchange of objects and object-method invocations that occur
over the network. The HTTPS protocol performs the same functions as the HTTP protocol
in conjunction with the SSL protocols.

4. The SSL protocols. These protocols comprise rules and conventions that govern the
exchange of messages in a secure environment. SSL provides channel-level security for
encryption, authentication and authorization.

3.3.13.3.13.3.13.3.1 Transaction ModelTransaction ModelTransaction ModelTransaction Model

The transaction model that governs the exchange of service protocol messages is a simple
asynchronous request and response model. There is no requirement for multiple message
exchanges, multiple action messages per transaction exchange or for a more complex
transaction chaining or two phase commits. The need for these advanced transactions will
surface as more PIPs are created. The sequence of message exchange is specified in the PIP
document.

3.3.23.3.23.3.23.3.2 RosettaNet Agent ProtocolRosettaNet Agent ProtocolRosettaNet Agent ProtocolRosettaNet Agent Protocol

The RosettaNet agent protocol is known as a RosettaNet Object as it is modeled on the OBI
object specification. Much of the following specification is taken from the OBI specification and
modified to meet the needs of RosettaNet.

The RosettaNet Object comprises five fields as shown in Figure 12. Multi-byte values should
use network (or big endian) byte order. The version field is four bytes in length. It uses a
<major>.<minor> numbering scheme to indicate a version of the RosettaNet Object. The
major and minor numbers should be treated as separate two 8-bit integers with the major
number in the most significant two bytes and the minor number in the third and fourth bytes.

The “version number” field contains the “RosettaNet Object” version of the RosettaNet
Object format which would be represented with the bytes: 0x00010100.

The “data length” field is a 32-bit integer that represents the number of bytes in the
RosettaNet content field.

Copyright 1999 by RosettaNet. All rights reserved 36

The “Content” field is a variable length string containing a message from a protocol higher up
the protocol stack (Service Message).

The “signature length” field is a 32-bit integer that represents the length in bytes of the
signature field. This field must always be present and should be 0 if no signature is included.

The “signature” field is a variable length field that contains a signature on the contents of the
RosettaNet content field. The content of the signature field is a BER-encoded PKCS #7 data
object. If no signature is included, this field is empty.

Version number (RosettaNet version #)

Content length (length of content field in bytes)

Content

Signature length (length of next field in bytes)

Signature (optional; PKCS #7 signature on data)

4 bytes

4 bytes

variable

variable

4 bytes

Field description

Figure 12. Structure of a RosettaNet Object

3.3.33.3.33.3.33.3.3 HTML User Agent ProtocolHTML User Agent ProtocolHTML User Agent ProtocolHTML User Agent Protocol

RosettaNet PIPs currently make use of Hypertext Markup Language (HTML) v3.2 as specified
by the W3C.

The server-browser-server method for transmitting RosettaNet messages relies on the use of
hidden fields within HTML forms and uses a user's browser during the transmission. Hidden
values in an HTML form allow a CGI application to pass name-value pairs to a browser without
the knowledge of the end user. Using the POST method, a browser can send name-value pairs
from an HTML form to a CGI application via a Web server. The server then starts the
designated CGI application and passes the browser-supplied data to the application.

RosettaNet specifies a parameter, ERNO, for passing the complete encoded RosettaNet Object
to an HTML user agent. The HTML user agent protocol message encapsulates an upper

Copyright 1999 by RosettaNet. All rights reserved 37

protocol message as a single name-value pair. This name-value parameter is described as
follows:

Parameter: ERNO

Occurrences:Multiple

Usage: RosettaNet service to HTML user agent

Value: A base64 encoded RosettaNet Object containing encapsulated upper protocol
message and an optional digital signature.

Example 5 shows how the name-value pair parameter is used in an HTML document instance.
This message is returned as a response to a previous request for this message.

Example 5. Name-Value Pair Parameter

<HTML>
 <HEAD>
 <TITLE>Subscription Request</TITLE>
 </HEAD>
 <BODY>
 <FORM METHOD=POST ACTION="http://www.example.com/rn-agent/submit" >
 <INPUT TYPE=HIDDEN NAME=ERNO
VALUE="the_base64_encoded_RosettaNet_Object">
 <INPUT TYPE=SUBMIT NAME="Submit">
 </FORM>
 </BODY>
</HTML>

In this example, a “SUBMIT” button is placed in an HTML user agent window. When the button
is pressed, a “POST” method on the network resource identified by the action URL is invoked.
The name-value pair is then passed as a parameter of this method whose format is specified as
a CGI protocol message (see following section for details). The RosettaNet Object is converted
to a base64-encoded object before it is encapsulated as the value for the “VALUE” attribute.

3.3.3.1 Encoding RosettaNet Objects

When a RosettaNet object is transferred embedded in an HTML form, it must be base64
encoded as specified in RFC 1521. The base64 encoding method converts an arbitrary sequence
of 8-bit bytes to a form that can be represented in 6-bit groups. In the encoding process, a
sequence of three 8-bit bytes is treated as four 6-bit groups, each of which is then translated
into a single digit in the base64 alphabet that uses a 65-character subset of ASCII. (This subset
has the property that it is highly portable in that it is represented identically in all versions of
ISO 646 including US-ASCII and in all versions of EBCDIC.) The output stream (encoded
bytes) must be represented in lines of no more than 76 characters each. Base64-encoded data
are about 33% larger than non-encoded data.

Copyright 1999 by RosettaNet. All rights reserved 38

3.3.3.2 Compliance

1. The “POST” method must be specified in the message.

2. The value “ERNO” in the "NAME" field must be capitalized.

3. The RosettaNet Object must be base64 encoded prior to insertion into the value field for
the “VALUE” attribute, when embedded in an HTML form.

4. Partners must agree on the URL value for the “ACTION” attribute.

3.3.43.3.43.3.43.3.4 Common Gateway Interface (CGI) Agent ProtocolCommon Gateway Interface (CGI) Agent ProtocolCommon Gateway Interface (CGI) Agent ProtocolCommon Gateway Interface (CGI) Agent Protocol

The CGI agent protocol message is typically transmitted from a web browser to a RosettaNet
service. It is not recommended that this protocol be used between services. The RosettaNet
agent protocol should be used instead. However, CGI can be supported for limited or special
use RosettaNet applications.

The CGI agent protocol comprises a name-value pair parameter with the same semantics of the
HTML user agent protocol but with a different syntax. The name of the parameter for this
protocol message is “ERNO” and the value of the parameter is a RosettaNet Object. The
syntax for the name-value pair is as follows:

ERNO=RosettaNet_Object

3.3.4.1 Compliance

1. The keyword “ERNO” must be capitalized.

3.3.53.3.53.3.53.3.5 HyperText Transfer ProtocolsHyperText Transfer ProtocolsHyperText Transfer ProtocolsHyperText Transfer Protocols

The HyperText Transport Protocol (HTTP) is the core transport protocol used for the World
Wide Web. RosettaNet implementations can use HTTP operating over TCP/IP for unsecured
transfer of upper protocol messages or HTTP operating over SSL (HTTPS) for secured transfer
of upper protocol messages.

3.3.5.1 Structure of an HTTP Message

This section, describing some of the structure of an HTTP request and response message, is
adapted from the HTTP/1.0 specification. This section comprises only those parts of the HTTP
specification that are used to specify the parameters required to transfer upper protocol
messages passed down the RosettaNet protocol stack. Please refer to the HTTP specification
for more details.

The HTTP protocol is a request/response protocol. A client sends a request to the server in
the form of a request method, URI, and protocol version, followed by a MIME-like message
containing request modifiers, client information, and possible body content over a connection
with a server. The server responds with a status line, including the message's protocol version
and a success or error code, followed by a MIME-like message containing server information,
entity meta-information, and possible entity-body content.

Copyright 1999 by RosettaNet. All rights reserved 39

A request message from a client to a server includes, within the first line of that message, the
method to be applied to the resource, the identifier of the resource, and the protocol version
in use. The following grammar rule specifies the format of this message.
Request = Request-Line
 *(...
 | entity-header)
 CRLF
 message-body

The Request-Line begins with a method token, followed by the Request-URI and the protocol
version, and ending with CRLF. Space (SP) characters separate the elements. No CR or LF is
allowed except in the final CRLF sequence. The following grammar rule specifies the format of
the request line.
Request-Line = Method SP Request-URI SP HTTP-Version CRLF

After receiving and interpreting a request message, a server responds with an HTTP response
message. The following grammar rule specifies the format of the response message.

Response = Status-Line
 *(...
 | entity-header)
 CRLF
 message-body

The Status-Line consists of the protocol version followed by a numeric status code and its
associated textual phrase, with each element separated by SP characters. No CR or LF is
allowed except in the final CRLF sequence. The following grammar rule specifies the format of
the status line.
Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

The entity-header fields define meta-information about the entity-body or, if no body is present,
about the resource identified by the request. Only those parameters used to transfer upper
protocol messages from the RosettaNet protocol stack are shown. Please refer to the HTTP
specification for more details.

entity-header = Content-transfer-encoding
 | Content-type
 | Content-length
 | ...

Content-Type specifies the media type of the underlying data. Content-Encoding may be used
to indicate any additional content encoding applied to the data in the message-body. The Entity-
Length of a message is the length of the message-body before any transfer-encoding has been
applied.

3.3.5.2 RosettaNet HTTP Format Specification

There are two RosettaNet HTTP "Request" message format specifications.

1. An HTTP Request message that is used to exchange a RosettaNet agent protocol message.

2. An HTTP Request message that is used to exchange a CGI agent protocol message.

Copyright 1999 by RosettaNet. All rights reserved 40

The request line in the message must use the “POST” verb as the “Method” parameter for all
request exchanges. Two MIME types are used to specify the content type of the message body.

• The MIME type application/x-rosettanet-agent.

• The MIME type application/x-www-form-urlencoded.

Example 6 shows the transfer-protocol request message for exchanging an encapsulated
RosettaNet agent protocol message.

Example 6. RosettaNet Message Exchange

POST https://www.example.com/rn-agent/submit HTTP/1.0
Content-length: 3492
Content-type: application/x-rosettanet-agent; version=1.0

RosettaNet_Object

Example 7 shows the transfer-protocol request message for exchanging an encapsulated CGI
agent protocol message.

Example 7. CGI Message Exchange

POST https://www.example.com/rn-agent/submit HTTP/1.0
Content-length: 3492
Content-type: application/x-www-form-urlencoded

ERNO=RosettaNet_Object

There is one RosettaNet “Response” message format specification that is used to exchange an
HTML user agent protocol message. One MIME type is used to specify the content type of the
message body.

• The MIME type text/html.

Example 8 shows the transfer-protocol response message for exchanging an encapsulated
HTML user agent protocol message.

Example 8. HTML Message Exchange

HTTP/1.0 OK 200
Content-length: 3492
Content-type: text/html

<HTML>
 <HEAD>
 <TITLE>Subscription Request</TITLE>
 </HEAD>
 <BODY>
 <FORM METHOD=POST ACTION="http://www.example.com/rn-agent/submit" >
 <INPUT TYPE=HIDDEN NAME=ERNO
 VALUE="the_base64_encoded_RosettaNet_Object">
 <INPUT TYPE=SUBMIT NAME="Submit">
 </FORM>
 </BODY>
</HTML>

Copyright 1999 by RosettaNet. All rights reserved 41

3.3.5.3 Compliance

• Implementations must support HTTP/v.1.0 or higher

• If using MIME types, then one of the following must pertain, as appropriate:

• Use of the MIME type application/x-rosettanet-agent.

• Use of the MIME type application/x-www-form-urlencoded.

• Use of the MIME type text/html.

• The “POST” method for HTTP requests.

• Content encoding value must be “base64” when transferring RosettaNet agent protocol
messages embedded in an HTML form.

3.3.63.3.63.3.63.3.6 Secure Socket Layer (SSL) ProtocolsSecure Socket Layer (SSL) ProtocolsSecure Socket Layer (SSL) ProtocolsSecure Socket Layer (SSL) Protocols

Refer back to Table 1 for terminology. Transmission of RosettaNet Objects using HTTP makes
use of the Secure Sockets Layer (SSL) Protocol that is being standardized by the Internet
Engineering Task Force (IETF). This security protocol provides data encryption, server
authentication, message integrity, and optional client authentication for a TCP/IP connection.
RosettaNet specifies use of SSL Version 3 and requires use of the “client authentication” mode
of SSL where the client and server authenticate each other. Authentication between parties is
based on the exchange of valid certificates.

Use of the SSL v.3 protocol in the transmission of RosettaNet Objects provides data integrity,
mutual authentication, and confidentiality. Specifically, it ensures that:

• the object sent was properly received and not tampered with during transmission

• the sender has cryptographic assurance of the identity of the recipient

• the recipient has cryptographic assurance of the identity of the sender

• transmission is encrypted so that third parties eavesdropping on network components may
not view the contents of RosettaNet Objects being exchanged

SSL V3 includes the real-time negotiation of algorithms for encryption and message integrity
between client and server. Standard SSL ciphers include DES, 3DES, RC4, and RC2. Key
lengths used for encryption during SSL sessions are related to the selected cipher suite. If the
negotiated cipher is based on RC4, the key length will be either 40 or 128 bits. For DES the
key length will be 56 bits and for 3DES the key length will be 168 bits.

Partners are responsible for negotiating SSL ciphers and key lengths for RosettaNet
transactions. In all cases however the selected cipher suite must provide at least 40-bit
encryption and must ensure that authentication occurs, i.e. Diffie-Hellmann without certificates
should not be used.

Copyright 1999 by RosettaNet. All rights reserved 42

4444 DDDDigital Signaturesigital Signaturesigital Signaturesigital Signatures

The digital signature specification is based on the use of PKCS #7 detached signatures which are
described in PKCS #7: Cryptographic Message Syntax Standard by RSA Data Security. PKCS #7
describes a general syntax for data with cryptography applied to it. This specification is
compatible with PKCS #7 in that it is based on the data type for signed data defined by PKCS
#7. This section specifies the use of PKCS #7 signatures within RosettaNet-compliant systems
to ensure interoperability across implementations.

Digital signatures are specified as “detached signatures” which means that the digital signature is
encoded separately from the data that has been signed. The primary benefit of using a detached
signature is that it enables implementations that do not support digital signatures to handle the
upper protocol message that is signed.

The transport security protocol used to transmit RosettaNet Objects also provides the
recipient with a high level of assurance of origin and content. The Secure Sockets Layer
authenticates the sender and receiver and protects the integrity and confidentiality of the data
stream. The additional benefits of a digital signature must be compared with the cost of
implementation. RosettaNet implementations and trading partner relationships may decide to
forego the use of digital signatures.

Descriptions of the data structures and the processes involved in constructing and verifying a
PKCS #7 detached signature follow to illustrate the use of PKCS #7 within RosettaNet-
compliant applications. Implementers should refer to the PKCS #7 document for correct
grammar and syntax.

Use of digital signatures is optional by trading partners engaged with specific PIPs. Note that
some PIPs require the use of digital signatures. Also, solution partners wishing to support
multiple PIPs among arbitrary trading partners should make provision for supporting the use of
digital signatures. When used, digital signatures are based on the PKCS #7 cryptography
standard and are detached signatures encoded separately from the data to which they apply. If
a signature is used within a RosettaNet Object it is a signature on the data contained within the
RosettaNet Object's content field. The primary benefit of a detached signature is that
implementations that do not support digital signatures will be able to process data that has
been signed even though they are unable to verify the signature.

Within RosettaNet, signatures are associated with Initiating and Servicing Organizations and not
with individuals. A digital signature provides non-repudiation of origin and content for the
transmission of the object between partners in the supply chain. The recipient is assured that a
particular message was sent by a service or someone with access to the signer’s private key.
This means a message cannot be forged or tampered with and a signer cannot deny having sent
a particular message.

It should be noted that the transport security protocol used to transmit RosettaNet Objects
also provides the recipient with a high level of assurance of origin and content as used here.
The Secure Sockets Layer authenticates the sender and protects the integrity of the data
stream. If the result of the authentication step is passed along to the application, then this
provides the recipient with information that can be used to ensure the authenticity of the
received order.

Copyright 1999 by RosettaNet. All rights reserved 43

Digital signatures can provide two additional advantages. First, they provide evidence that can
be stored for later retrieval if non-repudiation is a partner interface process requirement.
Second, they provide the opportunity to have multiple authorized signers within an
organization. However, these additional benefits of digital signatures must be compared with
the cost of implementation. Initial RosettaNet implementations may choose to forego the use
of digital signatures.

4.14.14.14.1 Structure of a RosettaNet Digital SignatureStructure of a RosettaNet Digital SignatureStructure of a RosettaNet Digital SignatureStructure of a RosettaNet Digital Signature

The structure of a RosettaNet Object's signature, based on PKCS#7, is a BER-encoded object
that consists of the fields and values in Table 3.

Table 3. Fields within a RosettaNet Digital Signature
Name Value Description

ContentType SignedData Content Type

Version 1 Current syntax standard

DigestAlgorithms md5 and/or sha-1 Identifies the algorithms used in the
signatures

ContentInfo This field is empty when a detached
signature is used

Certificates Field for transmitting signer’s certificate(s)

IssuerAndSerialNumber The unique identifier of the signer’s
certificate and public key

DigestAlgorithm md5 or sha-1 Identifies algorithm used

DigestEncryptionAlgorithm RsaEencryption Digest Encryption Algorithm

EncryptedDigest This is the digital signature on the external
upper protocol message.

4.24.24.24.2 Preparing and Verifying a SignaturePreparing and Verifying a SignaturePreparing and Verifying a SignaturePreparing and Verifying a Signature

The process of preparing a PKCS #7 digital signature breaks down into the following steps:

1. Encoding a value of type ContentInfo according to PKCS #7 for the data to be signed.

This step is not necessary when a detached signature is used (as specified in RosettaNet) as
the inner ContentInfo field is left empty. It is included here for completeness.

2. Digesting the data to be signed according to PKCS #7.

This will be done with the signer’s message digest algorithm; either MD5 or SHA-1 is
required. The input to the message digest algorithm is the original data content. The output,
the message digest, is an octet string.

3. Encoding a value of type DigestInfo according to PKCS #7 from the message digest.
Digesting the data to be signed according to PKCS #7.

Copyright 1999 by RosettaNet. All rights reserved 44

The output of this step is a BER-encoded value which includes the digest algorithm identifier
and the message digest.

4. Encrypting the encoded DigestInfo value with the signer’s private key.

This will be done with RSA. The result is an octet string representing the encryption with
the signer’s private key of the BER encoding of a value of type DigestInfo. This is often
referred to as the encrypted message digest.

5. Encoding a value of type SignedData according to PKCS #7 from the first ContentInfo value,
the encrypted message digest, and other information.

The first ContentInfo value will be empty since RosettaNet specifies the use of detached
signatures. The output of this step is a BER-encoded value which includes the encrypted
message digest, the signer’s certificate(s), the unique identifier of the signer’s certificate, the
message-digest algorithm identifier, and the message digest encryption algorithm.

6. Encoding a value of type ContentInfo according to PKCS #7 from the SignedData value.

The content type is PKCS #7 SignedData. The output of this step is a BER-encoded value
which includes the SignedData value.

7. The original order content and the BER-encoded PKCS #7 value of type ContentInfo are
placed in an RosettaNet Object.

8. The order content is placed in the RosettaNet content field. The ContentInfo value is
placed in the signature field.

The process of verifying a signature in a RosettaNet Object breaks down into the following
steps:

1. Extracting the BER-encoded PKCS #7 value of type ContentInfo from the signature field of
the RosettaNet Object.

2. Decoding the value of type ContentInfo to extract the SignedData value.

The content type should be verified to be PKCS #7 SignedData. The output of this step is
the BER-encoded value SignedData.

3. Decoding the SignedData value to determine the signer’s public key, the encrypted message
digest, and the message digest encryption algorithm.

The output of this step is an identifier that uniquely identifies the sender’s public key, an
identifier that identifies the digest encryption algorithm and the encrypted message digest.
The signer’s public key is contained in a certificate included in the SignedData and is
referenced by an issuer name and serial number that uniquely identifies the certificate for
the public key.

4. Decrypting the encrypted message digest with the signer’s public key and the message digest
encryption algorithm identified in the SignedData value (RSA for RosettaNet) to obtain a
value of type DigestInfo.

The output is a BER-encoded value which includes the digest algorithm identifier and the
recovered message digest.

Copyright 1999 by RosettaNet. All rights reserved 45

5. Decoding the value of type DigestInfo to obtain the message digest and the digest algorithm
identifier.

6. Digesting the contents of the RosettaNet data field with the digest algorithm identified in
DigestInfo.

The output of this step is the computed message digest which is compared to the
recovered message digest from the prior step to verify the signature.

7. Verifying the signature by comparing the recovered message digest to the computed
message digest.

8. Verifying signer’s certificate.

9. Verifying that signer is an authorized signer for this trading partner.

4.34.34.34.3 ComplianceComplianceComplianceCompliance

Compliance with RosettaNet digital signature specifications requires the following:

1. If a signature is used, the signature field within a RosettaNet Object must contain a PKCS
#7 ContentInfo data object of type SignedData, encoded using the Basic Encoding Rules;

2. If a signature is used, it must be a PKCS #7 detached signature which means that SignedData
will contain a signature on the external upper protocol content and its inner ContentInfo
field will be empty;

3. Support for MD5 and SHA-1 message digest algorithms;

4. Support for RSA encryption for digest encryption;

5. Support for verification of signatures using RSA public key sizes from 512 (minimum) to
1024 (recommended) bits.

5555 Authentication Using SSL and DigitaAuthentication Using SSL and DigitaAuthentication Using SSL and DigitaAuthentication Using SSL and Digital l l l
CertificatesCertificatesCertificatesCertificates

The RosettaNet authentication model is based on the use of the Secure Sockets Layer (SSL) v.3
protocol and RosettaNet digital certificates to ensure that:

• the sender has cryptographic assurance of the identity of the recipient;

• the recipient has cryptographic assurance of the identity of the sender.

Authentication is the process of reliably establishing the identity of a party that is
communicating.

At a high-level, SSL authentication works as follows. SSL-enabled servers typically accept SSL
connection requests from clients on port 443. When the client connects to this port, it initiates
an SSL “handshake” which establishes the session. During this handshake, the authentication
process begins with an exchange and verification of certificates between the client and server.
When mutual authentication is used (as specified in RosettaNet), each party must present a

Copyright 1999 by RosettaNet. All rights reserved 46

verifiable certificate from a trusted certificate authority. If either party cannot, the handshake
fails and the session terminates.

There are several aspects to certificate verification (and authentication) within SSL. First, each
party must prove it is the legitimate owner of the certificate it presents. The certificate itself
does not authenticate, the combination of the certificate and the correct private key does. To
demonstrate that the entity presenting the certificate is the legitimate certificate owner, SSL
requires that the presenter digitally sign data exchanged during the handshake. Each party signs
protocol data (including its certificate) to prove it is the legitimate owner of the certificate.
Certificates are also verified by checking their validity dates and by verifying the digital signature
of the trusted certificate authority which is included with the certificate.

Once authentication has occurred, a server can map the client’s name in the certificate to
access control databases. In this way, end-users present their certificates rather than
usernames and passwords to gain access to information that is access-controlled. Within
RosettaNet, this is the model assumed for user access to private services containing
confidential information. In addition, information from the verified RosettaNet certificate is
used to identify the user within messages transmitted from Servicing Organizations to Initiating
Organizations.

5.15.15.15.1 Digital Certificate SpecificationsDigital Certificate SpecificationsDigital Certificate SpecificationsDigital Certificate Specifications

A digital certificate is an electronically signed document issued by a trusted third party, called a
Certificate Authority, which binds identifying information to an individual’s public key. Within
RosettaNet, X.509 certificates are used by SSL for authentication of both users and servers.
Specifically, certificates are used by:

• a user, to authenticate to Servicing Organization service sites

• Initiating Organization server to authenticate to Servicing Organization servers

• Servicing Organization server to authenticate to users and to Initiating Organization servers

The RosettaNet specification defines minimal requirements for public key certificates for users
and servers with the goal of simplifying implementation and achieving interoperability. These
requirements are outlined in the following sections.

Digital certificates may also be optionally used within RosettaNet to securely distribute the
public keys that trading partners use to verify a company’s digital signature on a signed order or
order request document. The certificate used to distribute the public key associated with a
digital signature on an message will typically be a different certificate (with a different public key)
than the one used by the same trading partner for authentication during SSL sessions. It is
distributed with the digital signature.

5.1.15.1.15.1.15.1.1 Certificate Content RequirementsCertificate Content RequirementsCertificate Content RequirementsCertificate Content Requirements

Digital certificates contain data that identify the holder of the certificate. Certificates for use in
RosettaNet applications are based on the X.509, Version 3 standard. The X.509 standard
defines the data that can be used within a certificate. RosettaNet specifies a subset of these
fields that are the minimum required content for certificates used within RosettaNet-compliant

Copyright 1999 by RosettaNet. All rights reserved 47

systems. Other fields may be included in the certificate but the following fields (with exception
of Email address) are required for RosettaNet applications:

• Certificate Serial Number

• Subject Common Name

• Subject Organization Name

• Subject Email address (optional)

• Subject Public Key

• Certificate Validity Period

• Issuer Organization Name

• Issuer Signature

RosettaNet recommends that user certificates contain data in the Subject field that uniquely
identifies the user. For the purposes of RosettaNet, the Subject Common Name and/or the
Subject Email address (if available) in combination with the Organization Name are the
certificate fields used to establish the identity of the user.

RosettaNet recommends that the user certificate contain data that uniquely identifies the
organization with which the user is affiliated in order that a Servicing Organization provide the
user with access to the appropriate service information. The Subject Organization Name in the
user certificate establishes the identity of the initiating organization. An Initiating Organization
is responsible for keeping the use of its “organization name” consistent across its user
certificates so that trading partners can use the contents of this field to authorize service
access.

If the Organization Name field is not sufficiently granular to establish the appropriate service
functionality, trading partners can agree to use additional mechanisms (in conjunction with
certificates for authentication) to convey necessary information (e.g. an account number) as
part of the user’s access to the service.

5.1.25.1.25.1.25.1.2 Selection of a Certificate AuthoritySelection of a Certificate AuthoritySelection of a Certificate AuthoritySelection of a Certificate Authority

The value of a certificate lies in the fact that the integrity of the data contained in the certificate
can be cryptographically verified. This process involves verifying the validity of a chain of
certificates up to a trust point or Root Certificate. Each certificate in the chain is linked to the
one above through the use of digital signatures. Verification involves the validation of these links
starting at the bottom. Validation stops when the trust point or Root Certificate is reached.
The Root Certificate is a self-signed certificate generated by a Certificate Authority (CA). It is
essential that the Root Certificate be distributed in a secure manner, from a secure source and
stored locally for use in validating certificates.

Initiating Organizations implementing RosettaNet-compliant solutions will need to decide
whether to outsource digital certificate services to an external, 3rd party Certificate Authority
(CA) or to use an internal certificate infrastructure based on a company-specific CA. Many
factors must be considered in making this decision including the corporation’s internal

Copyright 1999 by RosettaNet. All rights reserved 48

information technology capabilities and strategy, cost, time-to-market, interoperability
considerations, trading partner plans, etc.

An important factor in the selection of a CA for use in RosettaNet (or other inter-enterprise)
applications is that the CA’s Root Certificate be distributed widely, in a secure manner.
Optimally, the CA’s Root Certificate will be distributed with standard Web browser software.
This will tend to minimize the implementation issues associated with certificates.

RosettaNet recommends the use of a commercial 3rd party CA whose Root Certificate is
included within common browser software as long as the CA can meet the RosettaNet content
requirements for certificates as specified in the previous section.

Initiating organizations may, in the future, when an appropriate infrastructure is in place, use
self-issued certificates (certificates generated and signed by the organization itself rather than a
trusted 3rd party) in RosettaNet applications as long as these certificates meet the minimal
certificate content requirements specified in the previous section. However, RosettaNet
discourages the use of self-issued certificates because these will increase the burden of trading
partner set-up and maintenance. Initiating organizations that leverage internal self-issue
certificate infrastructures in RosettaNet applications must plan to issue (and re-issue as needed)
certificates to trading partners and to provide trading partners with a copy of their Root
Certificate.

For administrative convenience of other trading partners, servicing organizations MUST install
site certificates issued by a commercial 3rd party CA whose Root Certificate is distributed with
common browser software. This is important to avoid the need to update user browsers with
new Root Certificates when setting up a new trading partner. If an Initiating Organization uses
self-issue certificates, the Servicing Organization will also need to install the Initiating
Organization’s Root Certificate.

5.1.35.1.35.1.35.1.3 Certification Classes and PoliciesCertification Classes and PoliciesCertification Classes and PoliciesCertification Classes and Policies

Commercial Certificate Authorities offer varying levels of service based on customer
requirements and intended use of the certificates. These levels of service affect certificate
issuance, management and revocation as well as operational controls and assurances that are
provided by the CA. For example, the process a particular CA uses to verify the information
contained in a digital certificate prior to issuance, such as information related to the individual’s
identity, may vary depending on the level of service. Applications involving large financial
transactions may require extensive verification of information while applications with limited
security needs may require only limited verification.

5.1.45.1.45.1.45.1.4 Certificate Revocation ListsCertificate Revocation ListsCertificate Revocation ListsCertificate Revocation Lists

There will occasionally be a need to revoke a digital certificate. This might happen, for example,
as the result of a user leaving the company or changing job responsibilities. Revocation of a
certificate is the responsibility of the organization and its issuing CA. Some CAs publish a list of
revoked certificates known as a certificate revocation list (CRL) on a regular basis that can be
used for access control purposes.

Copyright 1999 by RosettaNet. All rights reserved 49

Organizations are responsible for informing their trading partners of revocations of server
certificates in a timely manner.

5.1.55.1.55.1.55.1.5 ComplianceComplianceComplianceCompliance

Compliance with the RosettaNet authentication model requires that:

• browsers and servers must support SSL V3

• browsers and servers must be able to present verifiable certificates to authenticate
themselves

• certificates must meet RosettaNet certificate content requirements

• browsers and servers must be able to use certificates to authenticate the other party

• SSL mutual authentication is required

• the negotiated cipher suite must not allow a non-authenticated session (i.e. no Diffie-
Hellman without certificates)

• RSA public key length be 512 to 1024 bits.

• the authentication step must provide applications with certificate information necessary for
authorization decisions including the Subject Common Name, Subject Organization Name,
Issuer Organization Name, etc.

6666 Techn Techn Techn Technical Complianceical Complianceical Complianceical Compliance

In order to promote interoperability it is necessary to define the concept of RosettaNet
technical compliance. RosettaNet technical compliance specifies a minimal level of
implementation that allows for the useful interoperability of systems and business processes.
This section defines the requirements for such minimal technical compliance.

Technical compliance with this RosettaNet specification is outlined in two dimensions. First, all
implementations must meet certain minimal requirements related to data, transport and
security to be considered RosettaNet-compliant. Second, each of the interested parties (i.e.
Servicing Organizations, Initiating Organizations and users) must meet certain minimal
requirements to be considered technically compliant.

6.16.16.16.1 Compliance with PIP SpecificationsCompliance with PIP SpecificationsCompliance with PIP SpecificationsCompliance with PIP Specifications

Technical compliance with PIP specifications entails different compliance requirements for
action, transaction, and process specifications.

Copyright 1999 by RosettaNet. All rights reserved 50

Service Specification: Verify that content and sequence within the message is valid with respect to
the Service Protocol Message DTDs and guidelines.

6.26.26.26.2 Compliance with Protocol Message SpecificationsCompliance with Protocol Message SpecificationsCompliance with Protocol Message SpecificationsCompliance with Protocol Message Specifications

Implementations that are compliant with RosettaNet protocol message specifications MUST:

1. be able to create RosettaNet protocol messages formatted according to this RosettaNet
specification;

2. be able to package upper protocol messages as RosettaNet Objects prior to transmission;

3. be able to interpret and process RosettaNet Objects without digital signatures;

4. be able to interpret and process RosettaNet Objects that contain digital signatures even if
signature verification is not supported.

6.36.36.36.3 Compliance with TransferCompliance with TransferCompliance with TransferCompliance with Transfer----Related SpecificationsRelated SpecificationsRelated SpecificationsRelated Specifications

Implementations compliant with RosettaNet specifications for server-to-server transfer MUST:

1. be able to transmit RosettaNet Objects directly to RosettaNet-compliant servers using
HTTP POST with SSL v.3 as specified in this RosettaNet specification;

2. be able to receive RosettaNet Objects directly from RosettaNet-compliant servers using
HTTP POST with SSL v.3 as specified in this RosettaNet specifications;

3. be able to recognize and interpret the Content-Type “application/x-rosettanet-agent”;

4. be able to designate a URL path where RosettaNet Objects can be received;

5. be able to provide information from authentication session to applications for verification of
message origin.

Implementations compliant with RosettaNet transfer-related specifications for server-browser-
server transfer MUST:

1. if sending, be able to use HTTP POST method to transmit base64-encoded RosettaNet
Objects to a known URL path via a browser using a hidden field (“ERNO”) in an HTML
form as specified in this RosettaNet specification;

2. if receiving, be able to receive base64-encoded RosettaNet Objects at a designated URL
path via an HTTP POST from a browser using a hidden field (“ERNO”) in an HTML form, as
specified in this RosettaNet specification.

6.46.46.46.4 Compliance with SecurityCompliance with SecurityCompliance with SecurityCompliance with Security----Related SpecificationsRelated SpecificationsRelated SpecificationsRelated Specifications

Implementations compliant with RosettaNet security-related specifications MUST:

1. be able to use SSL v.3 protocol for secure Internet communications;

2. be able to use the mutual authentication mode of SSL for authentication between clients
and servers;

Copyright 1999 by RosettaNet. All rights reserved 51

3. be able to use (at minimum) 40-bit encryption for SSL sessions;

4. be able to use certificates for authentication of clients and servers as specified by this
RosettaNet specification;

5. be able to use authentication information for access control;

6. NOT provide, or require the use of, digital signatures that are not in compliance with
RosettaNet technical specifications.

Note that minimal compliance with RosettaNet security-related specifications DOES NOT
REQUIRE:

1. that clients and servers support certificate revocation lists as part of authentication;

2. that clients and servers be able to include RosettaNet-compliant digital signatures within a
RosettaNet Object;

3. that clients and servers be able to verify RosettaNet-compliant digital signatures contained
within a RosettaNet Object.

6.56.56.56.5 Technical Compliance for Servicing OrganizationsTechnical Compliance for Servicing OrganizationsTechnical Compliance for Servicing OrganizationsTechnical Compliance for Servicing Organizations

A Servicing Organization that is compliant with RosettaNet technical specifications MUST:

1. be able to authenticate uses prior to service access through the use of digital certificates
consistent with this RosettaNet specification;

2. be able to limit user access to private services based on information contained in digital
certificates and optionally through profile information presented at time of service access;

3. be able to create RosettaNet Objects containing upper protocol messages consistent with
this RosettaNet specifications;

4. be able to send RosettaNet Objects containing upper protocol messages via the Internet to
RosettaNet-compliant trading partner servers using server-to-server transport or server-
browser-server transport;

5. designate a URL at which it can receive RosettaNet Objects containing messages from
trading partners;

6. be able to receive RosettaNet Objects containing upper level protocol messages via the
Internet from RosettaNet-compliant trading partners servers consistent with this
RosettaNet specification;

7. be able to present a valid certificate consistent with RosettaNet specifications for use in
authentication during interactions with trading partners;

8. be able to authenticate trading partner servers that present valid digital certificates;

9. be able to support secure Internet communications through SSL v.3 Internet security
protocol.

Copyright 1999 by RosettaNet. All rights reserved 52

6.66.66.66.6 Technical Compliance for Initiating OrganizationsTechnical Compliance for Initiating OrganizationsTechnical Compliance for Initiating OrganizationsTechnical Compliance for Initiating Organizations

An Initiating Organization that is compliant with this RosettaNet specification MUST:

1. provide users with Internet access to services located at the Servicing Organization site;

2. enable secure Internet communications by supporting use of SSL v.3 Internet security
protocol by users and servers across corporate firewalls;

3. publish a URL at which it can receive service requests from trading partners;

4. be able to receive messages at this URL via the Internet from RosettaNet-compliant trading
partner servers through either the server-to-server transport method or the server-
browser-server method;

5. be able to create RosettaNet Objects containing messages consistent with RosettaNet
specifications

6. be able to send RosettaNet Objects containing messages to trading partner servers via the
Internet consistent with RosettaNet specifications;

7. be able to present a valid certificate compliant with this RosettaNet specification for use in
authentication during interactions with trading partner servers;

8. be able to authenticate trading partner servers that present valid digital certificates.

6.76.76.76.7 Technical Compliance for UsersTechnical Compliance for UsersTechnical Compliance for UsersTechnical Compliance for Users

A user that is compliant with RosettaNet technical specifications MUST:

1. have a workstation with Internet connectivity;

2. have a secure Web browser (such as Netscape Navigator 3.0 or later or Microsoft Internet
Explorer 3.0 or later) installed on workstation;

3. have a valid certificate compliant with this RosettaNet specification securely installed in the
browser for use in authentication with servicing organization service sites;

4. be able to use SSLv.3 for secure Internet communications.

6.86.86.86.8 Technical Compliance for Third Party AgentsTechnical Compliance for Third Party AgentsTechnical Compliance for Third Party AgentsTechnical Compliance for Third Party Agents

A third party agent that is compliant with RosettaNet specifications MUST:

1. comply with RosettaNet specifications (as stated above) for the entity for which the agent is
acting as proxy.

Note that third party agent solutions that meet the above condition are said to be technically
compliant and are assumed to be capable of inter-operating with other RosettaNet-compliant
solutions.

Copyright 1999 by RosettaNet. All rights reserved 53

6.96.96.96.9 TechnicaTechnicaTechnicaTechnical Compliance For Technology Provider Compliance For Technology Provider Compliance For Technology Provider Compliance For Technology Provider
SolutionsSolutionsSolutionsSolutions

A technology provider solution that is compliant with this RosettaNet specification MUST:

1. be able to create messages consistent with RosettaNet specifications;

2. be able to send messages over the Internet consistent with this specification;

3. be able to receive messages via the Internet from other RosettaNet-compliant solutions
consistent with this specification;

4. be able to interpret messages correctly;

5. enable the location of services at Servicing Organization’s site;

6. enable the location of user profile information at Initiating Organization’s site;

7. be able to accept certificates for authentication and access control for servers and users
consistent with this specification;

8. be able to limit access to sensitive information based on the authenticated identity;

9. support SSL v.3 for secure Internet communications;

10. comply with this RosettaNet specification.

Note that vendor solutions that meet the above conditions are said to be technically compliant
and are assumed to be capable of inter-operating with other RosettaNet-compliant solutions.
RosettaNet has no requirement for third party validation. Some parties may wish to offer or
accept such a service.

7777 Implementation NeedsImplementation NeedsImplementation NeedsImplementation Needs

This section provides details for implementing some of the technical requirements specified in
earlier sections.

7.17.17.17.1 RosettaNet Protocol Stack SpecificationRosettaNet Protocol Stack SpecificationRosettaNet Protocol Stack SpecificationRosettaNet Protocol Stack Specification

The following notes relate to the transmission of RosettaNet Objects using Server-to-Server
HTTP Protocol:

1. The decision regarding which approach to implement for transmission of RosettaNet
Objects will be based on several factors including the desired user's experience, the internal
processes of the partner organizations, security requirements, error handling, etc. Which
method is used between two partners should be discussed and agreed upon between
partners. To insure interoperability across a variety of partner systems, partner
implementations will need to be capable of supporting both server-to-server and server-
browser-server methods for upper protocol message transport.

2. Port 443 is reserved for use of HTTP with SSL.

Copyright 1999 by RosettaNet. All rights reserved 54

3. The application sending messages should maintain a queue of pending RosettaNet Objects
to send. The sender should remove objects from the queue only after the recipient has
acknowledged successful receipt with a 200 response.

4. The authenticated name of the transaction initiator should be passed from the transport
layer to the recipient’s application so that the application will be able to verify (in the
absence of a digital signature) that the initiator was authorized to send the actual message
that was received. Otherwise, it would be possible for an entity with a legitimate
RosettaNet certificate to send an unauthorized message under another entity’s name.

5. It is not the responsibility of the transport layer to detect duplicates.

The following notes relate to the Server-Browser-Server Method for transmitting RosettaNet
Objects:

1. This method of transmission is less robust than the server-to-server method specified in
section 3.2.1 of this specification but it does have the advantage of keeping the user “in the
loop” as a message is transmitted from one service to another. The browser/user will be a
potential intermediate point of failure. If the workstation crashes before the transmission is
complete, the transaction will be left in an undefined state. The POST may have successfully
completed or it may not. In this case, the user will need to determine whether the
Servicing Organization server received the message and if not, must return to the Servicing
Organization site to recreate the message. Since this is not a direct transmission from
server to server, there is no opportunity to automatically retransmit from the Servicing
Organization server if there is no acknowledgment from the Initiating Organization server.
Also, if the user does recreate the message the Initiating Organization server will not be
able to automatically screen for duplicates since the Servicing Organization will generate a
new and unique transaction ID number for the recreated message.

2. Transmission of messages via hidden fields in HTML forms is less secure than the server-to-
server method specified in section 3.2.1 of this specification. In particular, the Initiating
Organization server will not be able to authenticate the Servicing Organization server since
they are not establishing a direct connection. This means that an individual who knows how
to construct and transmit RosettaNet Objects to the fictitious company, MegaCorp, could
submit a forged message via the browser of an unsuspecting MegaCorp user who happened
to be browsing the network at the wrong place and time. This might not be caught except
by the user. Although it is highly unlikely that one of MegaCorp's trading partners would
fake message, a malicious third party who wanted to create confusion could forge a message
exchange under the name of one of MegaCorp’s trading partners. If this is a concern,
MegaCorp could require its trading partners to attach digital signatures to RosettaNet
Objects.

The following notes relate to the use of the Secure Sockets Layer protocols:

1. It is possible to maintain an SSL session in order to avoid repeating the complete SSL
authentication each time. This is recommended where appropriate.

2. Encryption algorithms cannot currently be exported if key lengths are greater than 40 bits
although it may be possible to obtain a waiver based on “use for financial purposes”.

Copyright 1999 by RosettaNet. All rights reserved 55

Default browser and server installations typically support 40-bit SSL encryption that has been
shown to be breakable by code crackers who have sufficient time and access to computing
resources. Typically, to obtain more secure 56- or 128-bit SSL encryption requires updating
both browsers and servers.

7.27.27.27.2 Digital SignaturesDigital SignaturesDigital SignaturesDigital Signatures

1. Except for ContentType and Content, the actual object identifiers or values for the fields
are not specified in PKCS #7. See PKCS #1, PKCS #9, and S/MIME Implementation Guide
(Version 2) for these object identifiers.

2. PKCS #7 places no requirements on the format of the data that is signed. The RosettaNet
data to be signed is the agent transaction protocol.

3. There is a degenerate case of SignedData in which there is no signature included. This can
be used for disseminating certificates and certificate revocation lists. This is not used within
RosettaNet.

4. PKCS #7 allows for countersignatures, i.e. the data to which the signature applies is itself
signed data. This is not supported within RosettaNet since the detached signature will
apply to the content of the RosettaNet data field in the RosettaNet Object and this is
defined to be a string representing the data in the content field.

5. BER encoding is defined in I.T.U. X.209. The BER were developed as a companion standard
to ASN.1. These rules take an ASN.1 description and derive a transfer representation
based on a tag, length, value scheme. The BER allow the automatic derivation of a transfer
syntax (e.g. hexadecimal 21) for every abstract syntax defined using ASN.1.

6. The data produced by BER encoding is 8-bit binary data. The entire RosettaNet Object
including the BER-encoded signature is converted to base64 prior to HTTP transport to
ensure that the RosettaNet Object is transferred intact.

7. The following optional PKCS #7 SignedData fields are not specified for use within
RosettaNet implementations: crls, authenticated attributes, and unauthenticated attributes.
Attributes would allow other information such as time stamps to be included in the
signature but use of attributes is not specified for RosettaNet.

8. Developer toolkits, such as Microsoft’s CryptoAPI and RSA Data Security’s BSAFE, provide
services that enable application developers to add PKCS cryptography including digital
signatures to their applications.

9. To be able to prove non-repudiation to a third party at a later date, implementers should
securely store the following items for later retrieval: the RosettaNet Object including the
digital signature, the signer’s certificate and the appropriate Certificate Authority’s public
key, the current certificate revocation list, and proof of date and time. Note that this
applies to logging requirement in server-to-server message transfer. There is no logging at
the browser.

Copyright 1999 by RosettaNet. All rights reserved 56

7.37.37.37.3 Authentication Using SSL and Digital CertificatesAuthentication Using SSL and Digital CertificatesAuthentication Using SSL and Digital CertificatesAuthentication Using SSL and Digital Certificates

1. The RosettaNet specification does not address how a user authenticates to servers within
the Initiating Organization because this does not affect interoperability.

2. Partners must configure their servers such that certificate information obtained by SSL
during authentication is presented to applications as CGI environment variables or via
server APIs.

3. The messages sent from Servicing Organizations to Initiating Organizations must include
user identity information obtained during the authentication step that the Initiating
Organization can map to its user profile database. At a minimum this information will
include Subject Common Name from the certificate. However, this may not uniquely
identify the user, so trading partners can optionally agree to have Initiating Organization
transmit a unique user ID prior to service access. When this ID is provided the Servicing
Organization will include this in the exchanged message. Otherwise, the Servicing
Organization will include the Subject Electronic Mail address from the certificate if that is
present.

4. A user's digital certificate is typically stored within the browser on the user's desktop
computer. A user will need to obtain a second certificate for an additional computer at
home or in the office. It should be possible to obtain multiple certificates, i.e. certification
for the same name with multiple key pairs, from the Certificate Authority. In this situation,
the certificate’s serial number will distinguish each certificate. Nominally certificates are
portable (e.g. the use of crytographically enabled "Smart Cards") but current
implementations and operational restrictions limit this portability.

5. If the user has multiple certificates installed, it will be necessary to configure the browser to
specify which certificate will be used.

6. A user's private key MUST be password protected.

7. Initiating and servicing organizations will maintain the certificate Issuer Organization Name
and the certificate Subject Organization Name in a trading partner database to assist in the
authentication and authorization process.

8. The servicing organization must be able to associate the Subject Organization Name used
with user certificates with the Initiating Organization’s entry in its trading partner database.
This organization name should be exchanged as part of trading partner set-up. The initiating
organization is responsible for insuring the consistent use of this name across all its user
certificates. This will enable Servicing Organizations to use information in a user’s
certificate to control access to private service functions. Use of a DUNS number in the
organization name field of the user certificates is one mechanism for insuring uniform
naming of the organization but is not required.

8888 RosettaNet ProtocolRosettaNet ProtocolRosettaNet ProtocolRosettaNet Protocol MessageMessageMessageMessage DTDsDTDsDTDsDTDs

All DTDs for RosettaNet messages, including those which are not PIP-specific are issued as
both Message Guidelines (HTML document) and DTDs. These are part of the RosettaNet
Implementation Framework, although documented separately. The current set of these

Copyright 1999 by RosettaNet. All rights reserved 57

guidelines and DTDs are listed as follows found via the web at
http://www.commercedesk.com/rosettanetrepository.

• Preamble Part Message Guideline (PreamblePartMessageGuideline.html;
PreamblePartMessageGuideline.dtd)

• Acceptance Acknowledgement Guideline (AcceptanceAcknowledgementGuideline.html;
AcceptanceAcknowledgementGuideline.dtd)

• Acceptance Acknowledgement Exception Guideline
(AcceptanceAcknowledgementExceptionGuideline.html;
AcceptanceAcknowledgementExceptionGuideline.dtd)

• Exception Guideline (ExceptionGuideline.html; ExceptionGuideline.dtd)

• Receipt Acknowledgement Guideline (ReceiptAcknowledgementGuideline.html;
ReceiptAcknowledgementGuideline.dtd)

• Receipt Acknowledgement Exception Guideline
(ReceiptAcknowledgementExceptionGuideline.html;
ReceiptAcknowledgementExceptionGuideline.dtd)

• Service Header Part Message Guideline (ServiceHeaderPartMessageGuideline.html;
ServiceHeaderPartMessageGuideline.dtd)

Elements and attributes are defined in the RosettaNet Business Dictionary.

9999 Complete Example of a Service Protocol Complete Example of a Service Protocol Complete Example of a Service Protocol Complete Example of a Service Protocol
Message Message Message Message

MIME-Version: 1.0
 Content-Type: Multipart/Related; boundary="RN-part-boundary";
 type="Application/x-RosettaNet"
 Content-Description: This is the RosettaNet business message

 --RN-part-boundary
 Content-Type: Application/XML; RNSubType="preamble-header"
 Content-Description: This is the Preamble Header part of the business
 message

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Preamble SYSTEM "PreamblePartMessageGuideline.dtd" >

<Preamble>

 <VersionIdentifier>1.01</VersionIdentifier>

 <DateTimeStamp>19990531T132000.0500Z</DateTimeStamp>

 <GlobalAdministeringAuthorityCode>RosettaNet
 </GlobalAdministeringAuthorityCode>

 <GlobalUsageCode>Test</GlobalUsageCode>

</Preamble>

http://www.commercedesk.com/rosettanetrepository

Copyright 1999 by RosettaNet. All rights reserved 58

 --RN-part-boundary
 Content-Type: Application/XML; RNSubType="service-header"
 Content-Description: This is the Service Header part of the business
 message

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ServiceHeader SYSTEM "ServiceHeaderPartMessageGuideline.dtd">

<ServiceHeader>

 <ProcessControl>

 <ProcessIdentity>

 <GlobalProcessCode>Distribute Product Stock Keeping Unit
 </GlobalProcessCode>

 <VersionIdentifier>1.0</VersionIdentifier>

 <GlobalProcessIndicatorCode>2A8</GlobalProcessIndicatorCode>

 <initiatingPartner>

 <GlobalBusinessIdentifier>123456789</GlobalBusinessIdentifier>

 </initiatingPartner>

<instanceIdentifier>

 <FreeFormText>1</FreeFormText>

</instanceIdentifier>

<description>

<FreeFormText xml:lang="en">The purpose of this PIP is to specify the process
for Buyers to notify customer managers when they have created a Stock Keeping
Unit (SKU) for their product. This process is typically executed after the
Buyer has been informed about new products.</FreeFormText>

</description>

</ProcessIdentity>

 <ServiceRoute>

 <toService>

 <BusinessServiceDescription>

 <GlobalBusinessServiceCode>Buyer Service
 </GlobalBusinessServiceCode>

 </BusinessServiceDescription>

 </toService>

 <fromService>

 <BusinessServiceDescription>

 <GlobalBusinessServiceCode>Customer Manager Service
 </GlobalBusinessServiceCode>

Copyright 1999 by RosettaNet. All rights reserved 59

 </BusinessServiceDescription>

 </fromService>

 </ServiceRoute>

 <TransactionControl>

 <GlobalTransactionCommandCode>Send</GlobalTransactionCommandCode>

 <AttemptCount>1</AttemptCount>

 <TransactionIdentity>

 <GlobalTransactionCode>Distribute Stock Keeping Unit
 </GlobalTransactionCode>

 <instanceIdentifier>

 <FreeFormText>1</FreeFormText>

 </instanceIdentifier>

 <description>

 <FreeFormText xml:lang="en">Activity distributes a Stock
 Keeping Unit (SKU) notification.</FreeFormText>

 </description>

 </TransactionIdentity>

 <PartnerRoleRoute>

 <fromRole>

 <PartnerRoleDescription>

 <GlobalPartnerRoleClassificationCode>Buyer
 </GlobalPartnerRoleClassificationCode>

 </PartnerRoleDescription>

 </fromRole>

 <toRole>

 <PartnerRoleDescription>

 <GlobalPartnerRoleClassificationCode>Customer Manager
 </GlobalPartnerRoleClassificationCode>

 </PartnerRoleDescription>

 </toRole>

 </PartnerRoleRoute>

 <ActionControl>

 <ActionIdentity>

 <GlobalBusinessActionCode>Stock Keeping Unit Creation
 Notification</GlobalBusinessActionCode>

 <VersionIdentifier>1.0</VersionIdentifier>

Copyright 1999 by RosettaNet. All rights reserved 60

 <instanceIdentifier>

 <FreeFormText>1</FreeFormText>

 </instanceIdentifier>

 <description>

 <FreeFormText xml:lang="en">A notification informing the
customer manager that a new Stock Keeping Unit (SKU) has been created for the
product.</FreeFormText>

 </description>

 </ActionIdentity>

 <GlobalDocumentFunctionCode>Request</GlobalDocumentFunctionCode>

 <PartnerRoute>

 <fromPartner>

 <PartnerDescription>

 <GlobalPartnerClassificationCode>Distributor
 </GlobalPartnerClassificationCode>

 <BusinessDescription>

 <GlobalBusinessIdentifier>123456789
 </GlobalBusinessIdentifier>

 </BusinessDescription>

 </PartnerDescription>

 </fromPartner>

 <toPartner>

 <PartnerDescription>

 <GlobalPartnerClassificationCode>Manufacturer
 </GlobalPartnerClassificationCode>

 <BusinessDescription>

 <GlobalBusinessIdentifier>987654321
 </GlobalBusinessIdentifier>

 </BusinessDescription>

 </PartnerDescription>

 </toPartner>

 </PartnerRoute>

 </ActionControl>

 </TransactionControl>

 </ProcessControl>

</ServiceHeader>

Copyright 1999 by RosettaNet. All rights reserved 61

 --RN-part-boundary
 Content-Type: Application/XML; RNSubType="service-content"
 Content-Description: This is the Service Content part of the business
 message

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Pip2A8ProductSKUCreationNotification SYSTEM
"Pip2A8ProductSKUCreationNotificationGuideline.dtd">

<Pip2A8ProductSKUCreationNotification>

 <ProductNotice>

 <theNotice><FreeFormText>Produt SKU created.
 </FreeFormText></theNotice>

 <GlobalProductIdentifier>00123456789012</GlobalProductIdentifier>

 </ProductNotice>

 <fromRole>

 <PartnerRoleDescription>

 <GlobalPartnerRoleClassificationCode>Buyer
 </GlobalPartnerRoleClassificationCode>

 <PartnerDescription>

 <GlobalPartnerClassificationCode>Distributor
 </GlobalPartnerClassificationCode>

 <BusinessDescription>

 <GlobalBusinessIdentifier>123456789
 </GlobalBusinessIdentifier>

 <GlobalSupplyChainCode>Information Technology
 </GlobalSupplyChainCode>

 </BusinessDescription>

 </PartnerDescription>

 <ContactInformation>

 <contactName><FreeFormText>A. Name</FreeFormText>
 </contactName>

 <telephoneNumber><CommunicationsNumber>299 688-8998
 </CommunicationsNumber></telephoneNumber>

 <EmailAddress>email@mail.com</EmailAddress>

 </ContactInformation>

 </PartnerRoleDescription>

 </fromRole>

 <toRole>

Copyright 1999 by RosettaNet. All rights reserved 62

 <PartnerRoleDescription>

 <GlobalPartnerRoleClassificationCode>Customer Manager
 </GlobalPartnerRoleClassificationCode>

 <PartnerDescription>

 <GlobalPartnerClassificationCode>Manufacturer
 </GlobalPartnerClassificationCode>

 <BusinessDescription>

 <GlobalBusinessIdentifier>987654321
 </GlobalBusinessIdentifier>

 <GlobalSupplyChainCode>Information Technology
 </GlobalSupplyChainCode>

 </BusinessDescription>

 </PartnerDescription>

 </PartnerRoleDescription>

 </toRole>

 <thisDocumentGenerationDateTime><DateTimeStamp>
 19990530T132000.0500Z
 </DateTimeStamp></thisDocumentGenerationDateTime>

 <thisDocumentIdentifier><ProprietaryDocumentIdentifier>
 DOC-0001</ProprietaryDocumentIdentifier>
 </thisDocumentIdentifier>

 <GlobalDocumentFunctionCode>Request</GlobalDocumentFunctionCode>

</Pip2A8ProductSKUCreationNotification>
 --RN-part-boundary—

BibliographyBibliographyBibliographyBibliography

RosettaNet DocumentsRosettaNet DocumentsRosettaNet DocumentsRosettaNet Documents

All documents listed in this section are published by RosettaNet. The latest versions can be
found at the RosettaNet website (http://www.rosettanet.org).

• PIP2A8: Distribute Product Stock Keeping Unit (SKU)

• Preamble Part Message Guideline

• Service Header Part Message Guideline

• Partner Interface Process Technical Architecture.

Other DocumentsOther DocumentsOther DocumentsOther Documents

Documents in this section are published by various organizations. Sources for the documents
are indicated when known.

Copyright 1999 by RosettaNet. All rights reserved 63

• Open Buying on the Internet (OBI)™ Standard, version 1.0, published May 1997 by The OBI
Consortium. This document was based on the work of the Internet Purchasing Roundtable.
Source: http://www.openbuy.org.

• Open Buying on the Internet (OBI)™ Technical Specifications, version 1.1, published June 1998
by The OBI Consortium. Source: http://www.openbuy.org.

• RFC 1521: “MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for
Specifying and Describing the Format of Internet Message Bodies.” N. Borenstein, N. Freed.
IETF, Network Working Group, 1993. (Source: http://www.ietf.org/rfc/rfc1521.txt)

• RFC 2119: “Key Words for Use in RFCs to Indicate Requirement Levels.” S. Bradner,
Harvard University. IETF, Network Working Group, 1997. (Source:
http://www.ietf.org/rfc/rfc2119.txt)

• PKCS #1: RSA Cryptography Specifications, version 2. B. Kaliski and J. Staddon, RSA Labs. The
Internet Society, © 1998. (Source: http://www.rsa.com)

• PKCS #7: Cryptographic Message Syntax Standard. An RSA Laboratories Technical Note.
Version 1.5. Revised November 1, 1993, and PKCS-7 version 1.6 bulletin: Extensions and
Revisions to PKCS #7 (13 May 1997): Source:
http://www.rsa.com/rsalabs/pubs/PKCS/html/pkcs-7.html (January 5, 1999)

• PKCS #9: Selected Attribute Types. An RSA Laboratories Technical Note. Version 1.1. Revised
November 1, 1993. (Source: http://www.rsa.com)

• S/MIME Implementation Guide, Version 2. Steve Dusse, RSA Labs, ©1996. (Source:
http://www.rsa.com)

• Recommendation X.200 (07/94) - Information technology – Open Systems Interconnection
-- Basic reference model: The basic model. I.T.U. (Available at: http://www.itu.int/itudoc/itu-
t/rec/x/x200-499/x200_25094.htm)

• Recommendation X.208 (11/88) “Specification of Abstract Syntax Notation One (ASN.1)”
(Technically aligned with ISO 8824.) ITU-T (formerly CCITT). (Available at:
http://www.itu.int)

• Recommendation X.209 (11/88) “Specification of basic encoding rules for Abstract Syntax
Notation One (ASN.1)” ITU-T (formerly CCITT). (Available at: http://www.itu.int)

http://www.openbuy.org/
http://www.rsa.com/rsalabs/pubs/PKCS/html/pkcs-7.html

Copyright 1999 by RosettaNet. All rights reserved 65

GlossaryGlossaryGlossaryGlossary

ACID: A set of software tests (atomicity, consistency, isolation and durability) that are used to
ensure hardware and software stability. For example, in transaction processing, a transaction
has atomicity if the operations that make up the transaction either all execute to completion, or
can be made to appear never to have occurred at all. A transaction has consistency when it
successfully transforms the system and the database from one valid state to another. A
transaction has isolation if it is processed concurrently with other transactions and still behaves
as if it were the only transaction executing in the system. (It does not interfere with other
transactions and others do not interfere with it.) A transaction has durability if all the changes
that it makes to the database become permanent when the transaction is committed. (from
Jonar C. Nader, Prentice Hall’s Illustrated Dictionary of Computing, 3rd edition, 1998)

agent: An agent is a network component that must implement protocols up to the agent layer
of the e-business network application communications model. An agent has no network identity
as a business service component. A user agent acts as an intermediary between a business
service and an employee. See also Business Service.

architecture: the way components of a complex system fit together (adapted from the Free
On-Line Dictionary of Computing, wombat.doc.ic.ac.uk)

"as-is" Business Process Model: A graphical model of an organization’ss business process
showing the activities, external processes and decisions along with the information exchanged
between them. An employee fulfilling a role performs each activity. External processes are
performed by external entities.

business service: A business service is a network component that responds to business
transaction requests initiated by other services. A business service implements protocols in all
of the layers of the e-business network application communication model. Services monitor the
execution of execution processes. A service component has network identity as a business
service. “Business service” has been shortened to “service” in most of this document. See also
agent.

compliance: an implementation is compliant if and only if it fully meets each and every
requirement of the RNIF specification, i.e., this document. In particular, each and every
transaction, action, or data element emitted by the implementation must be valid as defined in
“Validation” below. Compliance testing is the act of comparing an implementation's operation
against the specified requirements to determine compliance or noncompliance.

conformance: the ability to demonstrate in an unambiguous way that a given implementation
is correct with respect to the formal model. (from the Foundation for Intelligent Physical
Agents, www.fipa.org/spec/fipa97/fipa97.html)

control information: Information that is prepended and appended to content from an upper
network layer.

data element: a basic unit of identifiable and definable data (ISO 10324,1997), a basic unit of
data for the purpose of recording and interchange (ISO 2146,1988).

http://www.fipa.org/spec/fipa97/fipa97.html

Copyright 1999 by RosettaNet. All rights reserved 66

e-business: an enterprise that conducts many of its business functions through electronic
means. The term also refers to businesses that operate on the Internet and offer goods,
services, and information for sale via the Web. (from Jonar C. Nader, Prentice Hall’s Illustrated
Dictionary of Computing, 3rd edition, 1998)

extension: added functionality or features that do not violate the integrity of the original
framework

framework: a set of related architectural components.

guideline: a set or collection of specifications, sometimes including specific implementation
advice.

header: Control information prepended to content from an upper network layer.

implementation framework: guidelines for creating instances of related architectural
components.

interchange format: a specific data layout that defines a structured business document. The
interchange format specifies the sequence, representation and grouping of granular data
elements, and may describe each element in terms of data type, optionality, cardinality, size and
valid values.

lower layer: A layer lower down in the OSI network communications reference model.

network layer (layer): OSI communications reference model comprises layers, each
specifying particular network functions. Many protocols can implement the functions defined for
a layer.

OBI object: the standard data structure used to exchange order-related data between OBI-
compliant trading partners. The OBI object contains an encapsulated version of OBI data and it
may include a digital signature. The OBI data field within an OBI object contains an order or
order request that has been formatted based on the EDI-based OBI order format specification.
(from Open Buying on the Internet Technical Specifications, Release V1.1)

Partner Interface Process (PIP): A model that depicts the activities, decisions and partner
Role Interactions that fulfill a business transaction between two partners in the IT supply chain.
Each partner participating in the partner interface process must fulfill the obligations specified in
a PIP instance. If any one party fails to perform a service as specified in the PIP implementation
guide then the business transaction is null and void.

Partner Role Interaction: The one-way exchange of business properties between partner
roles. Partner Role Interactions are executed by networked service and agent applications that
interact by transmitting and receiving messages. These services interact via service transactions
and the agents with services. Both interact by transmitting and receiving messages.

PIP: See Partner Interface Process (PIP)

protocol: a protocol is a formal set of rules and conventions that governs how computers
exchange information over a network medium.

RosettaNet Object: the RosettaNet version of the “OBI Object” (see above), which
accommodates upper level protocols.

Copyright 1999 by RosettaNet. All rights reserved 67

segment: a group of logically related data elements in a defined sequence.

service: See business service.

specification: a detailed formulation, in document form, which provides a definitive
description of a system for the purpose of developing or validating the system [ISO/IEC 2382,
Information technology – Vocabulary, 1997]

standard: a set of clearly defined and agreed-upon conventions for specific programming
interfaces that has been approved by a formally constituted standards-setting body.

structure: something composed of organized or interrelated elements; the manner in which
the elements of something are organized or interrelated

syntax: the patterns of formation of sentences and phrases from words and the rules for the
formation of grammatical sentences in a language

"to-be" Business Process Model: A graphical model of an organization’s business process,
functioning as a partner type in the IT supply chain, showing the activities, external partner
processes and decisions along with the properties exchanged between them. An employee
fulfilling a role performs each activity. External processes are performed by IT supply chain
partner types. Property exchange between IT supply chain partners is depicted as a Role
Interaction.

trailer: Control information that is appended to content from an upper network layer.

transaction: A transaction is a collection of actions that have ACID properties. ACID is an
acronym or Atomicity, Consistency, Isolation and Durability. Atomicity means that a
transaction is an indivisible unit of work. Consistency means that a completed transaction must
leave the system in a correct state or it must abort. Isolation means that a transaction behavior
is not affected by other transactions that execute concurrently. Durability means that
transaction' effects are permanent after it commits.

transaction set: A collection of formatted data that contain the information required by a
receiver to perform a standard business transaction.

upper layer: A layer higher up in the OSI network communications reference model.

user: a person who requests RosettaNet services via a web browser.

valid XML document: An XML document is valid if it has an associated document type
declaration and if the document complies with the constraints expressed in it. (From World
Wide Web Consortium, Extensible Markup Language (XML) 1.0: W3C Recommendation 10-
February-1998)

validation: A data element, action, transaction, or process is valid if and only if it meets each
and every requirement of the RNIF specification, i.e., this document, as well as the each and
every requirement of the relevant PIP specification. Validation is the act of comparing such an
entity against the specified requirements to determine validity or invalidity. Note that each
action within a transaction must meet the content and sequence requirements for that
transaction. Similarly, each transaction within a process must meet the content and sequence
requirements of that process. Such validation is an essential part of testing an implementation.

Copyright 1999 by RosettaNet. All rights reserved 68

It is also anticipated that the validation team will develop specific requirements for such
validation during production use of an implementation.

vocabulary: the collection of words known to a particular person or group and used for a
particular purpose

well-formed XML document: An XML document that, taken as a whole, matches the XML
production labeled “document,” meets all the well-formedness constraints given in the XML
specification, and each of the parsed entities which is referenced directly or indirectly within
the document is well-formed. A well-formed may also be “valid” if it meets additional criteria.
(Adapted from World Wide Web Consortium, Extensible Markup Language (XML) 1.0: W3C
Recommendation 10-February-1998.) (See also valid XML document)

XML document: a data object made up of virtual storage units called entities, which contain
either parsed or unparsed data. Parsed data is made up of characters, some of which form the
character data in the document, and some of which form markup. Markup encodes a
description of the document’s storage layout and logical structure. (From www.w3.org/TR/PR-
xml-971208) See also well-formed XML document; valid XML document.

http://www.w3.org/TR/PR-xml-971208
http://www.w3.org/TR/PR-xml-971208

	I
	Introduction
	RosettaNet Business Model
	Partner Interface Process (PIP) Guidelines
	RosettaNet Networked Application Architecture

	Partner Interface Process (PIP) Specifications
	PIP Business Message Structure
	Message Preamble
	Message Header
	Message Content

	RosettaNet Message Guideline Format

	RosettaNet Networked Application Protocols
	Message-Packing Example
	RosettaNet Service Protocol Message
	Preamble
	Service Header
	Service Content

	RosettaNet Agent Protocol Message
	HTML User Agent Protocol Message
	Common Gateway Interface Agent Protocol Message
	Transfer Protocol Message

	Protocols below the Transfer Protocol

	Transferring RosettaNet Objects between Web Servers
	Server-to-Server Transfer
	Server-Browser-Server Transfer

	RosettaNet Protocol Stack Specification
	Transaction Model
	RosettaNet Agent Protocol
	HTML User Agent Protocol
	Encoding RosettaNet Objects
	Compliance

	Common Gateway Interface (CGI) Agent Protocol
	Compliance

	HyperText Transfer Protocols
	Structure of an HTTP Message
	RosettaNet HTTP Format Specification
	Compliance

	Secure Socket Layer (SSL) Protocols

	Digital Signatures
	Structure of a RosettaNet Digital Signature
	Preparing and Verifying a Signature
	Compliance

	Authentication Using SSL and Digital Certificates
	Digital Certificate Specifications
	Certificate Content Requirements
	Selection of a Certificate Authority
	Certification Classes and Policies
	Certificate Revocation Lists
	Compliance

	Technical Compliance
	Compliance with PIP Specifications
	Compliance with Protocol Message Specifications
	Compliance with Transfer-Related Specifications
	Compliance with Security-Related Specifications
	Technical Compliance for Servicing Organizations
	Technical Compliance for Initiating Organizations
	Technical Compliance for Users
	Technical Compliance for Third Party Agents
	Technical Compliance For Technology Provider Solutions

	Implementation Needs
	RosettaNet Protocol Stack Specification
	Digital Signatures
	Authentication Using SSL and Digital Certificates

	RosettaNet Protocol€Message€DTDs
	Complete Example of a Service Protocol Message

